

2013

Wisconsin

Energy Statistics

Wisconsin State Energy Office

Acknowledgements

Wisconsin's State Energy Office has produced the annual Wisconsin Energy Statistics publication since 1976. This publication serves as a foundation for evaluating energy activities and trends in Wisconsin.

The Wisconsin State Energy Office relies on many organizations, agencies and private businesses for the information needed to compile the statistics in this report. They include the Wisconsin Division of the American Automobile Association, the U.S. Department of Agriculture/National Agriculture Statistics Service, the U.S. Department of Commerce, and the U.S. Department of Energy/Energy Information Administration, Wisconsin's electric and gas utilities and the Public Service Commission of Wisconsin, the Wisconsin Departments of Administration; Agriculture Trade and Consumer Protection; Commerce; Workforce Development; Natural Resources; Revenue; and Transportation. Publicly-funded programs and private businesses that have contributed data toward this publication include Focus on Energy, landfill and wastewater treatment facilities, railroads, schools, and natural gas pipelines.

Holly Laux O'Higgins and Jim Mapp authored this publication. Design and layout of this publication was created by Kari Hamann Design in Madison, Wisconsin.

Picture 1
The wind turbines are owned and operated by We Energies and are located at Blue Sky Green Field Wind Energy Center in Fond du Lac County. www.we-energies.com/environmental/bluesky_greenfield.htm. The photo is courtesy of We Energies.

Picture 2

Pellets made from biomass represent Wisconsin's biggest opportunity for renewable energy for all economic sectors. Photo courtesy of the Biomass Energy Resource Center.

Picture 3
The photo is of the Kingsford hydroelectric project, located on the Menominee River in Florence County, Wisconsin and Dickinson County, Michigan, with installed capacity of 7,200 kilowatts. Photo courtesy of We Energies.

Picture 4

The United Community Center's (UCC) 13-kilowatt, fixed-rack solar electric system includes more than 70 solar panels on the roof of the main administration building. The panels produce more than 16,000 kilowatt-hours each year. Students of Bruce-Guadalupe Community School at UCC can track energy savings online. The photo is courtesy of UCC.

Picture 5
The grazing cows represent an energy source compliments of Wisconsin's Dairy State status-cow manure. Manure digesters create methane burned to create electricity. Photo courtesy of the Wisconsin Farm Bureau Federation.

Picture 6

The vehicle being refueled with E85 ethanol represents Wisconsin's largest home-grown contribution to renewable transportation fuels. Photo courtesy of the Wisconsin State Energy Office.

2013 Wisconsin Energy Statistics

State Energy Office

101 E. Wilson Street, 6th Floor
PO Box 7868
Madison, WI 53707-7868

Wisconsin Resource Energy Consumption

Resource energy consumption decreased by 2.7 percent in 2012. Resource energy includes all energy resources used to generate electricity, including the energy content of the coal, petroleum, nuclear and renewable fuels.

TOTAL RESOURCE ENERGY CONSUMPTION: 1,571.4 TRILLION BTU

By Type of Fuel

2012 TRILLIONS OF BTU AND PERCENT OF TOTAL

Type of Fuel	2012 Trillions of Btu	2012 Percent of Total
Renewables	89.3	5.7%
Nuclear	105.7	6.7%
Electric Imports	106.4	6.8%
Natural Gas	408.6	26.0%
Coal	413.9	26.3%
Petroleum	447.5	28.5%

1970-2012 TRILLIONS OF BTU

[^0]
By Economic Sector

2012 TRILLIONS OF BTU AND PERCENT OF TOTAL

Economic Sector	2012 Trillions of Btu	2012 Percent of Total
Agricultural	35.8	2.3%
Commercial	313.7	20.0%
Residential	380.3	24.2%
Transportation	420.3	26.7%
Industrial	421.4	26.8%

1970-2012 TRILLIONS OF BTU

Wisconsin End-Use Energy Consumption

End-use energy decreased by 2.8 percent overall in 2012.
End-use energy is a measure of the energy content of fuels at the point of consumption.
TOTAL END-USE ENERGY CONSUMPTION: 1,114.7 TRILLION BTU

By Type of Fuel

2012 TRILLIONS OF BTU AND PERCENT OF TOTAL

Type of Fuel	2012 Trillions of Btu	2012 Percent of Total
Coal (non-utility)	36.5	3.3%
Renewables	76.5	6.9%
Electricity	234.9	21.1%
Natural Gas	320.0	28.7%
Petroleum	446.9	40.1%

1970-2012 TRILLIONS OF BTU

[^1]
By Economic Sector

2012 TRILLIONS OF BTU AND PERCENT OF TOTAL

Economic Sector	2012 Trillions of Btu	2012 Percent of Total
Agricultural	25.7	2.3%
Commercial	162.9	14.6%
Residential	240.9	21.6%
Industrial	265.0	23.8%
Transportation	420.3	37.7%

1970-2012 TRILLIONS OF BTU

[^2]
Wisconsin Renewable Energy Production

Overall renewable energy resource use in Wisconsin increased 0.2 percent in 2012. Renewable energy production includes all renewable energy used in Wisconsin for generating electricity and for other applications that displace fossil fuels (e.g., space heating, transportation fuel).

By Type of Fuel

2012 TRILLIONS OF BTU AND PERCENT OF TOTAL

Type of Fuel	2012 Trillions of Btu	2012 Percent of Total
Solar	0.1	0.1%
Wind	5.4	6.1%
Hydro	5.5	6.1%
Biogas	11.2	12.5%
Ethanol	25.1	28.1%
Biomass	42.0	47.1%

1970-2012 TRILLIONS OF BTU

[^3]
By Economic Sector

2012 TRILLIONS OF BTU AND PERCENT OF TOTAL

Economic Sector	2012 Trillions of Btu	2012 Percent of Total
Commercial	2.6	3.0%
Utility	12.8	14.4%
Industrial	18.8	21.1%
Transportation	25.1	28.1%
Residential	29.9	33.5%

1970-2012 TRILLIONS OF BTU

Wisconsin Renewable Energy Use

In 2012, Wisconsin's electricity generated from renewable energy sources decreased by 4.8 percent.
Sales of renewable energy comprise 7.3 percent of total electric sales in Wisconsin, a decrease of 5.1 percent over 2011.
Wisconsin is 9 th in the nation for biofuels production, thanks to its eight ethanol and four biodiesel production facilities.

For Electricity Generation

2012 MILLIONS OF kWh AND PERCENT OF TOTAL

Type of Fuel	$\mathbf{2 0 1 2}$ Millions of kWh	2012 Percent of Total
Solar	19.3	0.4%
Biogas	737.7	14.7%
Biomass	$1,053.3$	21.1%
Wind	$1,583.7$	31.7%
Hydro	$1,608.2$	32.1%

1990-2012 RENEWABLE ENERGY ELECTRICITY GENERATED AND PURCHASED

Source: Wisconsin State Energy Office.

For Transportation

2012 ETHANOL SALES BY WISCONSIN PRODUCERS

2008-2012 ETHANOL AND BIODIESEL PRODUCED IN WISCONSIN

Of the 297.5 million gallons of ethanol sold in Wisconsin,
81.2 percent was produced in-state. Wisconsin's biodiesel facilities produced 13.8 million gallons of biodiesel.

[^4]
Wisconsin Residential Energy Use

Residential resource energy consumption decreased 7.4 percent while end-use consumption saw a drop of 9.4 percent in 2012. Natural gas is the dominant fuel used in Wisconsin homes, used primarily for space heating. Use of natural gas in the residential sector decreased 12.6 percent. Electricity use per customer decreased 0.9 percent.

By Type of Fuel

2012 TRILLIONS OF BTU AND PERCENT OF TOTAL

1970-2012 TRILLIONS OF BTU

a Renewables includes wood, solar, wind and biogas.
Source: Wisconsin State Energy Office.

Expenditures and Per Customer Usage

2012 MILLIONS OF DOLLARS AND PERCENT OF TOTAL

Type of Fuel	2012 Millions of Dollars	2012 Percent of Total
Petroleum	464.7	10.9%
Natural Gas	$1,042.6$	24.4%
Electricity	$2,772.5$	64.8%

1970-2012 ELECTRICITY AND NATURAL GAS USE PER CUSTOMER

Source: Wisconsin State Energy Office.

Wisconsin Commercial and Industrial Energy Use

Commercial sector end-use energy decreased 5.1 percent, while industrial sector end-use decreased 2.8 percent. In the commercial sector, electricity (47.6 percent) has surpassed natural gas (47.1 percent) as the major energy source, while the industrial sector's primary fuel is natural gas, comprising 47.8 percent of industrial energy consumption.

Commercial by Type of Fuel

2012 TRILLIONS OF BTU AND PERCENT OF TOTAL

Type of Fuel	2012 Trillions of Btu	2012 Percent of Total
Coal (non-utility)	1.5	0.9%
Renewables	2.6	1.6%
Petroleum	4.5	2.8%
Natural Gas	76.6	47.1%
Electricity	77.6	47.6%

1970-2012 TRILLIONS OF BTU

Source: Wisconsin State Energy Office.

Industrial by Type of Fuel

2012 TRILLIONS OF BTU AND PERCENT OF TOTAL

Type of Fuel	2012 Trillions of Btu	2012 Percent of Total
Petroleum	4.2	$\mathbf{1 . 6 \%}$
Renewables	18.8	7.1%
Coal (non-utility)	34.9	13.2%
Electricity	80.4	30.3%
Natural Gas	126.7	47.8%

1970-2012 TRILLIONS OF BTU

Source: Wisconsin State Energy Office.

Wisconsin Agricultural and Transportation Energy Use

Agricultural end-use petroleum consumption increased 11.0 percent in 2012 , while overall end use increased by 7.1 percent. Electricity use increased by 12.5 percent. Using 2012 dollars, the real, average statewide price of gasoline increased by $\$ 0.032$ a gallon (0.9 percent), to $\$ 3.624$ a gallon.

Agricultural by Type of Fuel

2012 TRILLIONS OF BTU AND PERCENT OF TOTAL

Type of Fuel	2012 Trillions of Btu	2012 Percent of Total
Other Fuels	0.1	0.5%
Natural Gas	1.8	7.0%
LPG	2.3	8.9%
Motor Gasoline	2.8	10.9%
Electricity	5.2	20.2%
Diesel Fuel	13.5	52.5%

1970-2012 TRILLIONS OF BTU

[^5]
Transportation by Type of Fuel

2012 MILLIONS OF GALLONS AND PERCENT OF TOTAL

Type of Fuel	2012 Millions of Gallons	2012 Percent of Total
Natural Gas	1.5	0.045%
LPG	1.6	0.048%
Aviation Gasoline	3.2	0.1%
Rail	50.2	1.5%
Jet Fuel	62.8	1.9%
Ethanol	297.5	8.8%
Diesel Fuel	764.1	22.7%
Gasoline	$2,186.9$	64.9%

1970-2012 MILLIONS OF GALLONS

Source: Wisconsin State Energy Office.

Wisconsin Energy Use for Electricity Generation and Electric Utility Sales

Wisconsin's energy use for electric generation decreased by 1.5 percent in 2012 , while total electricity sales increased 0.3 percent
despite slight decreases in electricity sales in the residential sector. Sales to commercial, industrial and agricultural customers increased.

Energy Use for Electricity Generation by Type of Fuel

2012 TRILLIONS OF BTU AND PERCENT OF TOTAL

Type of Fuel	2012 Trillions of Btu	$\mathbf{2 0 1 2}$ Percent of Total
Petroleum	0.6	0.1%
Renewables	12.8	1.9%
Natural Gas	88.6	12.8%
Nuclear	105.7	15.3%
Electric Imports	106.4	15.4%
Coal	377.5	54.6%

1970-2012 TRILLIONS OF BTU

Source: Wisconsin State Energy Office.

Electric Utility Sales by Economic Sector

2012 MILLIONS OF kWh AND PERCENT OF TOTAL

Economic Sector	2012 Millions of kWh	2012 Percent of Total
Agricultural	1,520	2.2%
Residential	21,012	30.5%
Commercial	22,727	33.0%
Industrial	23,561	34.2%

1970-2012 MILLIONS OF kWh

Source: Wisconsin State Energy Office.

Wisconsin End-Use Energy Expenditures

In 2012, Wisconsin's overall energy bill increased by $\$ 74.7$ million (0.3 percent) from 2011. Expenditures decreased for all sectors, except agriculture and transportation. Expenditures for electricity and petroleum saw small increases, while expenditures on natural gas and coal declined. Since 2000, Wisconsin's total energy expenditures increased by $\$ 11.2$ billion (93.4 percent increase).

By Type of Fuel

2012 MILLIONS OF DOLLARS AND PERCENT OF TOTAL

Type of Fuel	2012 Millions of Dollars	2012 Percent of Total
Coal (non-utility)	146.6	0.6%
Natural Gas	$2,332.1$	10.1%
Electricity	$7,052.6$	30.5%
Petroleum	$13,579.8$	58.8%

1970-2012 MILLIONS OF DOLLARS

[^6]
By Economic Sector

2012 MILLIONS OF DOLLARS AND PERCENT OF TOTAL

Economic Sector	$\mathbf{2 0 1 2}$ Millions of Dollars	2012 Percent of Total
Agricultural	681.4	2.9%
Industrial	$2,687.2$	11.6%
Commercial	$3,056.6$	13.2%
Residential	$4,279.7$	18.5%
Transportation	$12,406.1$	53.7%

1970-2012 MILLIONS OF DOLLARS

[^7]
Wisconsin Emissions

Future decreases in total emissions will depend on growth in coal-fired generation, old plant retirement, the effectiveness of future energy efficiency efforts, increased use of natural gas and renewable energy, and the disposition of proposed U.S. EPA rules. SO2 and NOX emissions are pollutants and are measured for air quality monitoring. CO_{2} is a greenhouse gas which contributes to climate change.

Sulfur Dioxide Emissions and Coal Use

Carbon Dioxide Emissions from Energy Use

1980-2012 ${ }^{\text {c }}$

Nitrogen Oxides Emissions and Coal Use

Utility Sulfur Dioxide Emissions

decreased 33.0 percent from 2011 to 2012.

Wisconsin CO_{2}

Emissions from Energy
decreased 6.5 percent in 2012.
Since 1990 total CO2 emissions have increased 7.4 percent.

Utility Nitrogen Oxides Emissions

decreased 24.4 percent from 2011 to 2012.
a 1993 target established in Wisconsin Statutes, 285.45(2)(a). http://www.legis.state.wi.us/statutes/Stat0285.pdf. Target is for all major utilities and large sources.
b 1991 target established in Wisconsin Statutes, 285.47(2). http://www.legis.state.wi.us/statutes/Stat0285.pdf. Target is for all major utilities.
c Does not include electric imports.
Source: Wisconsin State Energy Office.

Transportation and Heating Fuels

Wisconsinites spent $\$ 12.4$ billion on transportation in 2012, an increase of 5.1 percent, or $\$ 606.6$ million, over 2011. The increase in expenditures is due primarily to an increase in prices. Of the $\$ 4.3$ billion of residential energy spending, about $\$ 1.5$ billion (35 percent) pays for natural gas and petroleum for space heating.

Transportation Expenditures

2012 MILLIONS OF DOLLARS AND PERCENT OF TOTAL

Type of Fuel	2012 Millions of Dollars	2012 Percent of Total
Natural Gas	2.8	0.02%
Aviaton Gasoline	13.3	0.1%
Middle Distillate	172.1	1.4%
Jet Fuel	202.0	1.6%
Diesel	$3,012.4$	24.3%
Gasoline $^{\mathrm{a}}$	$9,003.5$	72.6%

Transportation Fuel Prices

Type of Fuel	2011 Price Per Gallon ${ }^{\text {b,c }}$	2012 Price Per Gallon ${ }^{\text {b,c }}$
Gasoline	$\$ 3.529$	$\$ 3.624$
Diesel	$\$ 3.867$	$\$ 3.953$

1970-2012 DOLLARS PER GALLON ${ }^{\text {b,c }}$

Heating Fuels Prices

Fuel	\% Change	2011 Price $^{\text {d }}$	2012 Price $^{\text {d }}$
Heating Oil	4.6%	$\$ 3.42$ per gallon	$\$ 3.58$ per gallon
LP Gas	17.0%	$\$ 2.01$ per gallon	$\$ 1.67$ per gallon
Natural Gas	13.0%	$\$ 7.85$ per MMBtu	$\$ 6.83$ per MMBtu
Residential Electricity	1.0%	$\$ 0.132$ per kWh	$\$ 0.134$ per kWh

2011-2012 DOLLARS PER MILLION BTU

Prices for residential fuels are updated once a week in the winter (October to March) and once a month in the summer (April to September) and are posted on the SEO webpage. Visit www.stateenergyoffice.wi.gov and click on Statistics/Tables and Heating Fuels.
a Includes ethanol
b From the American Automobile Association, Daily Fuel Gauge Report. http://www.fuelgaugereport.aaa.com/
c Prices are in 2012 dollars.
d All prices are statewide averages for the calendar year. Heating fuel and LP rates are gathered from fuel retailers across the state as part of an SEO telephone survey funded by the U.S. Department of Energy. Electricity price averages are compiled from rates reported to the Public Service Commission of Wisconsin. Natural gas rates are compiled from residential rates reported by Wisconsin's natural gas utilities.
Source: Wisconsin State Energy Office.

CHAPTER 1 - Total Energy Use

Wisconsin Resource Energy Consumption, by Type of Fuel
Wisconsin Resource Energy Consumption, by Type of Fuel, 1970-2012
Wisconsin Resource Energy Consumption, by Economic Sector

Wisconsin Resource Energy Consumption, by Economic Sector, 1970-2012
Wisconsin End-Use Energy Consumption, by Type of Fuel, 1970-2012

Wisconsin End-Use Energy Consumption, by Economic Sector, 1970-2012
Wisconsin Residential Energy Use, by Type of Fuel, 1970-2012
Wisconsin Commercial Energy Use, by Type of Fuel, 1970-2012
Wisconsin Industrial Energy Use, by Type of Fuel, 1970-2012
Wisconsin Energy Use for Electricity Generation, in Btu, by Type of Fuel, 1970-2012
Wisconsin Agricultural Energy Use, in Btu, by Type of Fuel, 1970-2012
Wisconsin Agricultural Energy Use, in Gallons and kWh, by Type of Fuel, 1970-2012
Wisconsin Transportation Energy Use, in Btu, by Type of Fuel, 1970-2012
Wisconsin Transportation Energy Use, in Gallons, by Type of Fuel, 1970-2012

CHAPTER 2 - Energy Use by Type of Fuel

Wisconsin Petroleum Use, by Economic Sector, 1970-2012
Wisconsin Petroleum Use, by Economic Sector
Wisconsin Petroleum Use, in Btu, by Type of Product, 1970-2012
Wisconsin Petroleum Use, in Gallons, by Type of Product, 1970-2012

Petroleum Product Deliveries to and Sales in Wisconsin, by Month, 2012
Wisconsin Production and Use of Ethanol in Reformulated Gasoline, E10 and E85, 1994-2012

Wisconsin Liquefied Petroleum Gas Use, by Economic Sector, 1970-2012

Wisconsin Natural Gas Use, by Economic Sector, 1970-2012
Wisconsin Natural Gas Use, by Economic Sector
Wisconsin Natural Gas Sales, by Public Service Commission of Wisconsin Sector, 1970-2012
Wisconsin Natural Gas Sales, by Month
Average Number of Natural Gas Customers in Wisconsin, by Public Service Commission of Wisconsin Sector, 1970-2012
Wisconsin Natural Gas Sales Per Customer, by Public Service Commission of Wisconsin Sector, 1970-2012
Wisconsin Natural Gas Deliveries, by Pipeline Company, 1970-2012
Wisconsin Coal Use, in Btu, by Economic Sector, 1970-2012
Wisconsin Coal Use, by Economic Sector
Wisconsin Coal Use, in Tons, by Economic Sector, 1970-2012
Wisconsin Electric Utility Coal Use, by Plant, 1975-2012

71 CHAPTER 3 - Renewable Energy

Coal Deliveries to Wisconsin Industries, by Region of Origin, 1975-2012

Coal Deliveries to Wisconsin Power Plants, by State of Origin, 1975-2012
Wisconsin Electric Utility Sales, by Economic Sector, 1970-2012
Wisconsin Electric Utility Sales, by Economic Sector

Wisconsin Electric Generating Capacity, by Type of Plant, 1990-2012

Wisconsin Utility Electric Power Generation, by Type of Fuel, 1970-2012

Electric Utility Sulfur Dioxide Emissions, 1980-2012
Electric Utility Nitrogen Oxides Emissions, 1989-2012

Wisconsin Sulfur Dioxide and Nitrogen Oxides Emissions and Coal Use

Wisconsin Power Plant Inventory, 2012

Wisconsin Total Renewable Energy Use, by Type of Fuel, 1970-2012

Wisconsin Wood Use, by Economic Sector, 1970-2012

Wisconsin Electric Utility Use of Wood Fuel, 1970-2012
Wisconsin, Midwest and U.S. Wind Generation and Capacity, 2000-2012
U.S. Photovoltaic Modules and Cell Prices, 1989-2012

Wisconsin Manufacturing Industry Coal Use, by Industry Group, 1971-2012

Coal Deliveries to Wisconsin, by Transportation Mode and Type of Receiving Facility, 1975-2012
Coal Deliveries to Wisconsin Power Plants, by Region of Origin, 1975-2012

Wisconsin Electricity Sales to Ultimate Customers, by Private and Municipal Utilities and Power Cooperatives, 1970-2012

Eastern Wisconsin Electric Utility Power Load and Non-Coincident Peak Demand, 1970-2012

Eastern Wisconsin Electric Utility Non-Coincident Peak Demand, 1970-2012

Eastern Wisconsin Electric Utility Power Load and Non-Coincident Peak Demand, by Month, 2012

Wisconsin Electric Generating Capacity, by Type of Plant and Type of Producer, 1990-2012

Wisconsin Independent Power Producer and Non-Utility Electric Power Generation, by Type of Fuel, 2005-2012
Wisconsin Electric Power Generation, All Producers, by Type of Fuel, 1970-2012
Wisconsin Electric Utility Fuel Costs of Power Generation, by Type of Plant, 1970-2012
Utility Annual Variable Costs of Power Generation, by Type of Plant and Cost of Purchased Power, 1970-2012

Wisconsin Total Renewable Energy Production and Use, by Economic Sector, 1970-2012

Wisconsin Renewable Energy Electricity Generated and Purchased, 1990-2012

Wisconsin Electric Utility and Non-Utility Hydroelectric Generation, 1970-2012

Wisconsin Manufacturing Industry Use of Wood Fuel, by Industry Group, 1972-2012
U.S. Photovoltaic Module Shipments and Conversion Efficiency, 1982-2012

CHAPTER 4 - Energy Efficiency Indices
Indices of Wisconsin Energy Efficiency, 1970-2012
Indices of Wisconsin Energy Efficiency, 1970-2012 Indices of Wisconsin Energy Expenditures, 1970-2012 Wisconsin Per Capita Resource Energy Consumption, by Type of Fuel, 1970-2012 Wisconsin Residential Electricity and Natural Gas Use Per Customer, 1970-2012 Wisconsin Commercial Electricity and Natural Gas Use Per Customer, 1970-2012 Focus on Energy Tracked Energy Savings, 2001-2012 Focus on Energy Ranked Energy Savings Measures, 2001-2012 Energy Consumption by Major New Household Appliances, 1972-2012 Energy Use in State Owned Buildings, 1974-2012 Low Income Units Weatherized Through State- and Utility-Supported Programs, 1980-2012 Reported Building Activity Affected by Wisconsin Energy Codes, 1979-2012

Wisconsin Carbon Dioxide Emissions from Energy Use, 1980-2012
Average Miles Driven Per Vehicle and Average Miles Per Gallon of Gasoline, Wisconsin and United States, 1970-2012

97 CHAPTER 5 - United States Energy Use

United States Resource Energy Consumption, by Type of Fuel, 1970-2012
99 United States Resource Energy Consumption, by Economic Sector, 1970-2012
100 Sources of U.S. Crude Oil and Petroleum Products, 1970-2012
1012012 U.S. Petroleum Use Domestically Produced and Imported

101 U.S. Petroleum Use, Production, Imports and Exports, 1970-2012
102 World Crude Oil Production, 1970-2012
103 United States Natural Gas Production, Imports, Consumption and Storage, 1970-2012

104 United States Monthly Natural Gas Production, Imports, Consumption and Storage, 2012
105 Natural Gas Withdrawals by Source, 1970-2012
106 Natural Gas Production, 1970-2012

107

110 U.S. Per Capita Resource Energy Consumption, by State, 2011
111 U.S. Resource Energy Consumption, by State, 2011
112 Primary Energy Intensity, by Country and Region, 2006-2011
113 Primary Energy Usage and GDP, by Country and Region, 2011

CHAPTER 6 - Wisconsin and United States Prices and Average Costs of Fuels

Wisconsin Energy Prices, 1970-2012

Wisconsin Residential Energy Prices, by Type of Fuel, 1970-2012

Wisconsin Residential Energy Prices, by Type of Fuel, 2012-2013 Winter Heating Season

Wisconsin Commercial Energy Prices, by Type of Fuel, 1970-2012

Wisconsin Industrial Energy Prices, by Type of Fuel, 1970-2012

Wisconsin Motor Gasoline and Diesel Fuel Retail Prices, 1970-2012

Wisconsin Alternative Vehicle Fuels Retail Prices, 2000-2012

Wisconsin Gasoline Prices Relative to the United States and the Midwest, 1994-2012

Wisconsin Electric Utility Average Costs of Fuel, 1970-2012
Wisconsin Electric Utility Coal Costs and Sulfur Content of Coal, by Utility Plant, 2012
Wisconsin Natural Gas Prices, by Economic Sector, 1970-2012
Wisconsin Natural Gas Prices, by Public Service Commission of Wisconsin Sector, 1970-2012
Wisconsin Natural Gas Prices Relative to United States Natural Gas Prices, by Sector, 1970-2012
Wisconsin Electricity Prices, by Economic Sector, 1970-2012
Wisconsin Electricity Prices, by Public Service Commission of Wisconsin Sector, 1970-2012 Average Utility Electricity and Natural Gas Prices, by Economic Sector, for Selected Midwestern States, 2012 Wisconsin Electricity Prices Relative to United States Electricity Prices, by Sector, 1970-2012 U.S. Energy Prices, 1973-2012
U.S. Spot Market Prices of Crude Oil \& Natural Gas, 2009-2012

National Indices of Price Inflation, 1970-2012

CHAPTER 7 - Wisconsin Expenditures for Energy

Wisconsin End-Use Energy Expenditures, by Type of Fuel Wisconsin End-Use Energy Expenditures, by Type of Fuel, 1970-2012

Wisconsin End-Use Energy Expenditures, by Economic Sector
Wisconsin End-Use Energy Expenditures, by Economic Sector, 1970-2012
Wisconsin Resource Use Energy Expenditures, Estimated Dollars Leaving Wisconsin, 1970-2012
Wisconsin Expenditures for Residential Energy, by Type of Fuel, 1970-2012
Wisconsin Expenditures for Commercial Energy, by Type of Fuel, 1970-2012
Wisconsin Expenditures for Industrial Energy, by Type of Fuel, 1970-2012
Wisconsin Expenditures for Agricultural Energy, by Type of Fuel, 1970-2012
Wisconsin Expenditures for Transportation Energy, by Type of Fuel, 1970-2012

146 CHAPTER 8 - Miscellaneous

147 United States Energy Use and Gross Domestic Product, 1970-2012
148 Wisconsin Population, Households, Gross State Product and Personal Income, 1970-2012
149 Wisconsin Employment, by Type, 1970-2012

150 Wisconsin Occupied Dwelling Units, by Type of Fuel for Space Heating, 1970, 1980, 1990, 2000, 2010 and 2012
151 Wisconsin Motor Vehicle Registrations, by Type of Vehicle, 1970-2012
152 Wisconsin Appliance Shipments, by Type, Cooling Degree Days and Gross National Product,1970-2012
153 Wisconsin Degree Day Zones
154 Wisconsin Normal Heating Degree Days, by Zone and Month
154 Wisconsin Normal Cooling Degree Days, by Zone and Month
155 Wisconsin Population-Weighted Heating Degree Days 1970-2012
1562011 Wisconsin Heating Degree Days, by Zone and Month
1562012 Wisconsin Heating Degree Days, by Zone and Month
157 Wisconsin Population-Weighted Cooling Degree Days, 1980-2012
1582011 Wisconsin Cooling Degree Days, by Zone and Month
1582012 Wisconsin Cooling Degree Days, by Zone and Month

159 DEFINITIONS AND CONVERSIONS APPENDIX
159 Energy Definitions
160 Conversion Factors

161 MAP APPENDIX

161 Wisconsin Petroleum Pipelines
162 Wisconsin Natural Gas Utility Service Territories and Major Pipelines
163 Wisconsin Electric Generating Facilities Over 100 Megawatts and Electric Transmission Lines

164 Major Electric Service Territories

165 Hydroelectric Generation Sites in Wisconsin, 2013
166 Estimated Wind Power Energy Potential (at 70 meters) and Existing Wind Development Locations, 2013
167 Biomass Resources Available in the United States

168 Estimated Solar Insulation for the United States, Two-Axis Tracker

CHAPTER 1

Total Energy Use

End use refers to the energy content of electricity and other fuels at the point of use by customers. Resource energy includes all energy resources used to generate electricity, including the energy content of the coal, petroleum, nuclear and renewable fuels. Resource energy also includes the energy used to produce the electricity imported into Wisconsin from other states and Canada. Because about 70 percent of the energy used to generate and distribute electricity to its point of use is lost as waste heat, resource consumption figures are greater than end use consumption figures.

As generation from coal decreases, generation from natural gas increases, and petroleum continues to be the primary transportation fuel in the state, each of these fuels represents approximately one-quarter of the state's resource energy use: natural gas, 26.0 percent; coal, 26.3 percent; and petroleum, 28.5 percent.

The balance of resource energy fuels in Wisconsin are: renewables (5.7 percent), nuclear energy (6.7 percent) and imported electricity (6.8 percent).

In 2012, renewables increased by 0.2 percent. This category includes hydroelectric generation, solar (photovoltaic and solar thermal), biomass (e.g., wood and wood by-products), biogas (e.g., agricultural manure digesters, landfill gas), and wind.

Nuclear power in Wisconsin is no longer owned by utilities, but by independent power producers who sell the power to customers in Wisconsin.

In general, the residential (24.2 percent), industrial (26.8 percent) and transportation (26.7 percent) sectors each account for about one-quarter of Wisconsin's resource energy consumption.. The commercial and agricultural sectors account for 20.0 percent and 2.3 percent, respectively.

In 2012, end-use energy consumption decreased in all sectors except transportation and agriculture. The residential sector saw a 9.4 percent decrease, the commercial sector a 5.1 percent decrease, and the industrial sector, a decrease of 2.8 percent. End-use consumption increased by 7.2 and 1.8 percent for the agriculture and transportation sectors respectively.

RESOURCE Energy Consumption	2012	Percent of Wisconsin's Resource Energy Consumption
Resource Energy Consumption	2.7% overall	
BY FUEL		26.3%
Coal Consumption, Utilities	15.7%	28.5%
Petroleum Consumption	0.3%	26.0%
Natural Gas Consumption	3.0%	6.8%
Electricity Imports	59.9%	5.7%
Renewables	0.2%	
BY ECONOMIC SECTOR	1.9%	26.7%
Transportation	2.5%	26.8%
Industrial	- 7.4%	24.2%
Residential	3.7%	20.0%
Commercial	7.8%	2.3%
Agricultural		

END-USE Energy Consumption	2012	Percent of Wisconsin's End-Use Energy Consumption
End-Use Energy Consumption	- 2.8% overall	
BY FUEL		
Petroleum Consumption	- 0.2%	40.1\%
Natural Gas Consumption	- 8.1%	28.7\%
Electricity Consumption	- 0.3%	21.1\%
Renewables Consumption	- 1.2%	6.9\%
Coal Consumption, Non-Utilities	-14.8\%	3.3\%
BY ECONOMIC SECTOR		
Transportation	- 1.8%	37.7\%
Industrial	- 2.8%	23.8\%
Residential	- 9.4%	21.6\%
Commercial	- 5.1%	14.6\%
Agricultural	- 7.2%	2.3\%

Wisconsin Resource Energy Consumption, by Type of Fuel

2012 TRILLIONS OF BTU AND PERCENT OF TOTAL

1970-2012 TRILLIONS OF BTU

[^8]
Wisconsin Resource Energy Consumption, by Type of Fuel

RESOURCE

1970-2012 TRILLIONS OF BTU AND PERCENT OF TOTAL

Year	Petroleum		Natural Gas		Coal ${ }^{\text {a }}$		Renewables ${ }^{\text {b }}$		Nuclear ${ }^{\text {d }}$		Electric Imports ${ }^{\text {c }}$		Total
1970 ${ }^{\text {r }}$	457.7	40.1\%	327.4	28.7\%	355.4	31.1\%	27.3	2.4\%	1.7	0.1\%	-28.2	-2.5\%	1,141.3
$1975{ }^{\text {r }}$	475.0	38.8\%	368.3	30.0\%	262.3	21.4\%	29.4	2.4\%	111.2	9.1\%	-20.4	-1.7\%	1,225.8
$1980{ }^{\text {r }}$	454.4	35.7\%	344.0	27.0\%	324.6	25.5\%	48.9	3.8\%	107.0	8.4\%	-6.5	-0.5\%	1,272.5
$1985{ }^{\text {r }}$	416.0	32.9\%	304.2	24.1\%	374.4	29.6\%	51.8	4.1\%	118.6	9.4\%	-1.8	-0.1\%	1,263.2
$1990{ }^{\text {r }}$	437.2	30.9\%	306.4	21.7\%	411.4	29.1\%	50.3	3.6\%	121.2	8.6\%	87.7	6.2\%	1,414.2
$1995{ }^{\text {r }}$	465.9	29.1\%	381.1	23.8\%	463.7	28.9\%	49.9	3.1\%	118.5	7.4\%	123.0	7.7\%	1,602.1
$1996{ }^{\text {r }}$	481.8	29.8\%	403.8	25.0\%	486.9	30.1\%	54.8	3.4\%	109.3	6.8\%	80.2	5.0\%	1,616.7
$1997{ }^{\text {r }}$	489.0	30.1\%	400.5	24.6\%	510.1	31.4\%	53.0	3.3\%	42.3	2.6\%	130.3	8.0\%	1,625.3
1998	490.1	30.4\%	367.7	22.8\%	495.8	30.8\%	47.6	3.0\%	101.5	6.3\%	107.7	6.7\%	1,610.4
1999 r	508.1	30.5\%	380.9	22.8\%	505.5	30.3\%	49.9	3.0\%	124.1	7.4\%	99.9	6.0\%	1,668.4
$2000{ }^{\text {r }}$	496.7	29.4\%	393.4	23.3\%	519.4	30.8\%	55.3	3.3\%	123.8	7.3\%	98.1	5.8\%	1,686.7
$2001{ }^{1}$	499.1	29.7\%	360.2	21.4\%	521.9	31.0\%	54.2	3.2\%	124.3	7.4\%	121.6	7.2\%	1,681.3
$2002{ }^{\text {r }}$	507.4	30.0\%	384.2	22.7\%	508.5	30.0\%	57.5	3.4\%	134.4	7.9\%	100.4	5.9\%	1,692.5
2003	511.4	29.9\%	394.3	23.0\%	527.0	30.8\%	59.5	3.5\%	132.0	7.7\%	86.9	5.1\%	1,711.1
2004	518.7	30.1\%	382.6	22.2\%	537.2	31.2\%	62.0	3.6\%	128.4	7.5\%	94.0	5.5\%	1,723.0
$2005{ }^{\text {r }}$	497.4	29.1\%	411.8	24.0\%	531.7	31.1\%	62.8	3.7\%	81.8	4.8\%	125.4	7.3\%	1,711.0
$2006{ }^{\text {r }}$	491.6	30.1\%	373.4	22.8\%	515.7	31.6\%	65.2	4.0\%	132.1	8.1\%	56.6	3.5\%	1,634.7
$2007{ }^{\text {r }}$	495.5	28.9\%	401.0	23.4\%	515.9	30.7\%	72.9	4.3\%	139.4	8.1\%	88.3	5.2\%	1,713.1
2008	474.8	27.8\%	412.4	23.9\%	540.8	31.7\%	80.4	4.7\%	131.3	7.7\%	72.3	4.2\%	1,711.9
2009 r	449.5	28.0\%	390.8	24.1\%	484.5	30.1\%	80.7	5.0\%	137.0	8.5\%	68.2	4.2\%	1,610.6
$2010{ }^{\text {r }}$	452.4	27.8\%	373.6	22.9\%	523.0	32.2\%	85.3	5.2\%	143.4	8.8\%	48.6	3.0\%	1,626.4
$2011{ }^{1}$	446.4	27.7\%	396.6	24.4\%	490.8	30.5\%	89.1	5.5\%	124.8	7.7\%	66.5	4.1\%	1,614.3
$2012{ }^{\text {p }}$	447.5	28.5\%	408.6	25.9\%	413.9	26.4\%	89.3	5.7\%	105.7	6.7\%	106.4	6.8\%	1,571.4

a Including petroleum coke.
b Renewables includes solar, wind, wood, biogas, biomass, ethanol and hydroelectric.
c Electric imports are the estimated resource energy used in other states or Canada to produce the electricity imported into Wisconsin. This resource energy is estimated assuming 11,300 Btu of resource energy per kWh imported into Wisconsin. Negative percentages indicate that resource energy was used in Wisconsin to produce electricity that was exported out of state.
d Nuclear energy reported here is from power plants formerly owned by Wisconsin utilities and currently owned by independent power producers. p Preliminary estimates.
r Revised due to revisions in contributing tables.
Source: Compiled from tables in this publication for Wisconsin petroleum, natural gas, coal, renewable resources and electricity use, by economic sector, and for Wisconsin electric utility energy use.

Wisconsin Resource Energy Consumption, by Economic Sector

2012 TRILLIONS OF BTU AND PERCENT OF TOTAL

1970-2012 TRILLIONS OF BTU

Wisconsin Resource Energy Consumption, by Economic Sector

RESOURCE
Total resource energy
2.7 percent in 2012.
7.8 transportation and
increases of 1.9 and
Othercent, respectively.
decreases of 7.4 percent
(residential), 3.7 percent
(commercial) and
2.5 percent (industrial).

1970-2012 TRILLIONS OF BTU AND PERCENT OF TOTAL

Year	Residential		Commercial		Industrial		Agricultural ${ }^{\text {a }}$		Transportation		Total
1970 ${ }^{\circ}$	324.3	28.4\%	149.3	13.1\%	368.0	32.2%	28.4	2.5\%	271.2	23.8\%	1,141.3
$1975{ }^{\text {r }}$	341.9	27.9\%	182.0	14.9\%	356.1	29.1\%	31.7	2.6\%	314.0	25.6\%	1,225.8
1980 ${ }^{\circ}$	355.6	27.9\%	198.5	15.6\%	351.7	27.6\%	37.5	2.9\%	329.2	25.9\%	1,272.5
$1985{ }^{\text {r }}$	343.7	27.2\%	220.0	17.4\%	347.1	27.5\%	37.9	3.0\%	314.5	24.9\%	1,263.2
1990'	359.8	25.4\%	270.0	19.1\%	401.9	28.4\%	35.2	2.5\%	348.3	24.6\%	1,415.2
1995 ${ }^{\text {r }}$	406.3	25.4\%	306.4	19.1\%	467.8	29.2\%	34.1	2.1\%	387.7	24.2\%	1,602.2
$1996{ }^{r}$	415.4	25.9\%	311.2	19.4\%	459.0	28.6\%	33.4	2.1\%	397.7	24.8\%	1,616.7
1997 ${ }^{\text {r }}$	395.0	24.7\%	310.9	19.4\%	480.4	30.0\%	32.6	2.0\%	406.4	25.4\%	1,625.3
1998 ${ }^{\text {r }}$	370.2	23.1\%	313.1	19.5\%	477.9	29.8\%	31.9	2.0\%	417.3	26.0\%	1,610.4
1999r	394.8	24.6\%	332.2	20.7\%	480.1	30.0\%	32.7	2.0\%	428.6	26.7\%	1,668.4
$2000{ }^{\prime}$	405.3	25.3\%	336.2	21.0\%	489.2	30.5\%	32.0	2.0\%	424.0	26.5\%	1,686.7
$2001{ }^{1}$	407.9	25.5\%	338.5	21.1\%	478.7	29.9\%	31.8	2.0\%	424.8	26.5\%	1,681.6
$2002{ }^{2}$	418.1	26.1\%	341.9	21.3\%	463.7	28.9\%	31.2	1.9\%	437.5	27.3\%	1,692.4
2003	442.8	27.6\%	322.0	20.1\%	475.6	29.7\%	31.9	2.0\%	438.8	27.4\%	1,711.1
$2004{ }^{\text {r }}$	433.7	27.1\%	315.0	19.7\%	496.2	31.0\%	30.7	1.9\%	447.3	27.9\%	1,723.0
$2005{ }^{\text {r }}$	430.5	26.9\%	337.2	21.0\%	482.3	30.1\%	32.1	2.0\%	428.9	26.8\%	1,711.0
$2006{ }^{\text {r }}$	399.4	24.9\%	322.6	20.1\%	454.2	28.3\%	34.2	2.1\%	424.3	26.5\%	1,634.7
$2007{ }^{\circ}$	428.7	26.8\%	344.7	21.5\%	475.8	29.7\%	34.8	2.2\%	429.0	26.8\%	1,713.1
$2008{ }^{\circ}$	438.9	27.4\%	351.8	22.0\%	465.7	29.1\%	37.4	2.3\%	418.2	26.1\%	1,711.9
$2009{ }^{\text {r }}$	415.2	25.9\%	332.6	20.8\%	420.8	26.3\%	39.3	2.5\%	402.8	25.1\%	1,610.6
$2010{ }^{\circ}$	409.3	25.5\%	327.7	20.5\%	434.6	27.1\%	35.5	2.2\%	419.4	26.2\%	1,626.5
2011 ${ }^{1}$	410.7	25.6\%	325.7	20.3\%	432.1	27.0\%	33.2	2.1\%	412.7	25.8\%	1,614.3
$2012{ }^{\text {p }}$	380.3	23.7\%	313.7	19.6\%	421.4	26.3\%	35.7	2.2\%	420.3	26.2\%	1,571.4

[^9]
Wisconsin End-Use Energy Consumption, by Type of Fuel

1970-2012 TRILLIONS OF BTU

1970-2012 TRILLIONS OF BTU AND PERCENT OF TOTAL

Year	Petroleum		Natural Gas		Coal		Renewables		Electricity		Total
$1970{ }^{\text {r }}$	449.8	46.0\%	296.3	30.3\%	124.3	12.7\%	22.5	2.3\%	84.4	8.6\%	977.2
1975	467.2	46.8\%	348.5	34.9\%	51.8	5.2\%	24.3	2.4\%	106.7	10.7\%	998.6
$1980{ }^{\text {r }}$	449.6	44.7\%	329.9	32.8\%	53.9	5.4\%	43.3	4.3\%	128.8	12.8\%	1,005.6
$1985{ }^{\text {r }}$	414.6	43.1\%	302.8	31.5\%	56.7	5.9\%	44.8	4.7\%	142.4	14.8\%	961.4
$1990{ }^{\text {r }}$	436.2	43.3\%	304.0	30.1\%	56.9	5.6\%	43.4	4.3\%	167.9	16.7\%	1,008.4
$1995{ }^{\text {r }}$	465.1	41.3\%	371.1	32.9\%	51.3	4.5\%	42.2	3.7\%	197.8	17.5\%	1,127.5
$2000{ }^{\text {r }}$	495.1	41.8\%	372.0	31.4\%	48.0	4.1\%	48.3	4.1\%	220.8	18.6\%	1,184.2
$2005{ }^{\text {r }}$	495.6	41.5\%	352.4	29.5\%	50.0	4.2\%	55.6	4.7\%	240.1	20.1\%	1,193.6
$2006{ }^{\text {r }}$	490.1	42.0\%	328.9	28.2\%	51.6	4.4\%	57.8	5.0\%	238.3	20.4\%	1,166.7
$2007{ }^{\text {r }}$	493.6	41.1\%	346.1	28.8\%	50.5	4.2\%	66.7	5.6\%	243.4	20.3\%	1,200.2
$2008{ }^{\text {r }}$	473.7	39.3\%	370.7	30.8\%	48.2	4.0\%	72.1	6.0\%	239.3	19.9\%	1,204.0
2009 r	449.0	39.5\%	349.2	30.7\%	43.1	3.8\%	70.2	6.2\%	226.2	19.9\%	1,137.7
$2010{ }^{\text {r }}$	451.9	39.8\%	330.5	29.1\%	44.3	3.9\%	72.7	6.4\%	234.6	20.7\%	1,134.2
$2011{ }^{\text {r }}$	445.9	38.9\%	348.2	30.4\%	42.8	3.7\%	75.5	6.6\%	234.2	20.4\%	1,146.6
$2012^{\text {p }}$	446.9	40.1\%	320.0	28.7\%	36.5	3.3\%	76.5	6.9\%	234.9	21.1\%	1,114.7

END-USE ENERGY
2.8\% IN 2012

End use energy is a measure of the energy content of fuels at the point of consumption. Since much of the energy needed to generate electricity is lost in the generation process, end use energy consumption figures will always be lower than the directly linked resource energy consumption figures.

End use energy

decreased by 2.8
percent overall in 2012,
after increasing by
1.1 percent in 2011.

Petroleum continues to be the most-used end use energy source in

Wisconsin (40.1 percent).

[^10]
Wisconsin End-Use Energy Consumption, by Economic Sector

End use energy consumption decreased 2.8 percent in 2012 . The transportation sector continues to be the largest consumer of end use energy in Wisconsin (37.7 percent).

1970-2012 TRILLIONS OF BTU

1970-2012 TRILLIONS OF BTU AND PERCENT OF TOTAL

Year	Residential		Commercial		Industrial		Agricultural		Transportation		Total
1970 ${ }^{\text {r }}$	266.2	27.2\%	111.2	11.4\%	307.0	31.4\%	21.6	2.2\%	271.2	27.8\%	977.2
1975	262.8	26.3\%	120.6	12.1\%	278.2	27.9\%	22.9	2.3\%	314.0	31.4\%	998.6
1980^{\prime}	267.1	26.6\%	119.0	11.8\%	263.6	26.2\%	26.7	2.7\%	329.2	32.7\%	1,005.6
1985 ${ }^{\text {r }}$	247.8	25.8\%	127.6	13.3\%	246.3	25.6\%	25.2	2.6\%	314.5	32.7\%	961.4
1990'	238.2	23.6\%	139.6	13.8\%	261.7	25.9\%	21.6	2.1\%	347.3	34.4\%	1,008.4
$1995{ }^{\text {r }}$	266.8	23.7\%	158.7	14.1\%	293.4	26.0\%	21.0	1.9\%	387.7	34.4\%	1,127.5
$2000{ }^{\prime}$	263.9	22.3\%	170.0	14.4\%	306.4	25.9\%	20.0	1.7\%	424.0	35.8\%	1,184.2
$2005{ }^{\text {r }}$	273.2	22.9\%	175.6	14.7\%	295.7	24.8\%	20.3	1.7\%	428.9	35.9\%	1,193.6
$2006{ }^{\text {r }}$	260.4	22.3\%	173.6	14.9\%	284.7	24.4\%	23.7	2.0\%	424.3	36.4\%	1,166.7
$2007{ }^{\text {r }}$	274.4	22.9\%	179.1	14.9\%	292.8	24.4\%	24.9	2.1\%	429.0	35.7\%	1,200.2
$2008{ }^{\text {r }}$	286.9	23.8\%	185.4	15.4\%	286.9	23.8\%	26.6	2.2\%	418.2	34.7\%	1,204.0
$2009{ }^{\text {r }}$	269.2	23.7\%	175.6	15.4\%	261.1	22.9\%	29.0	2.6\%	402.7	35.4\%	1,137.7
$2010{ }^{\text {r }}$	256.6	22.6\%	166.5	14.7\%	266.6	23.5\%	25.1	2.2\%	419.4	37.0\%	1,134.2
$2011{ }^{1}$	265.8	23.2\%	171.6	15.0\%	272.5	23.8\%	23.9	2.1\%	412.7	36.0\%	1,146.6
$2012^{\text {p }}$	240.9	21.6\%	162.9	14.6\%	265.0	23.8\%	25.7	2.3\%	420.3	37.7\%	1,114.7

p Preliminary estimates.
r Revised due to revisions in contributing tables.
Source: Compiled from tables in this publication for Wisconsin petroleum, natural gas, coal, renewable energy and electricity use, by economic sector, and for Wisconsin electric utility energy use.

Wisconsin Residential Energy Use, by Type of Fuel

1970-2012 TRILLIONS OF BTU

1970-2012 TRILLIONS OF BTU AND PERCENT OF TOTAL

Year	Petroleum ${ }^{\text {c }}$		Natural Gas		Coal		Renewables ${ }^{\text {a }}$		Electricity		Total End Use	Total Resource ${ }^{\text {b }}$
1970 ${ }^{\text {r }}$	107.9	40.5\%	107.0	40.2\%	9.5	3.6\%	11.9	4.5\%	29.9	17.2\%	266.2	324.3
$1975{ }^{\text {r }}$	87.6	33.3\%	122.4	46.6\%	3.8	1.4\%	11.8	4.5\%	37.2	14.1\%	262.8	341.9
1980 ${ }^{\text {r }}$	71.2	26.7\%	124.0	46.4\%	2.3	0.9\%	26.9	10.1\%	42.7	16.0\%	267.1	355.6
1985 ${ }^{\text {r }}$	58.6	23.7\%	116.9	47.2\%	0.9	0.4\%	26.1	10.5\%	45.2	18.3\%	247.8	343.7
$1990{ }^{\text {r }}$	51.4	21.6\%	114.7	48.1\%	0.4	0.2\%	21.4	9.0\%	50.3	21.1\%	238.2	359.8
$1995{ }^{\text {r }}$	48.4	18.1\%	137.5	51.5\%	0.3	0.1\%	22.4	8.4\%	58.2	21.8\%	266.8	406.3
$2000{ }^{\text {r }}$	40.1	15.2\%	136.4	51.7\%	0.2	0.1\%	25.0	9.5\%	62.1	23.5\%	263.9	405.3
$2005{ }^{\text {r }}$	37.8	13.9\%	132.9	48.7\%	0.1	0.0\%	29.4	10.7\%	73.0	26.7\%	273.2	430.5
$2006{ }^{\text {r }}$	39.3	15.1\%	121.9	46.8\%	0.1	0.0\%	28.4	10.9\%	70.7	27.2\%	260.4	399.4
$2007{ }^{1}$	36.8	13.4\%	133.0	48.5\%	0.1	0.0\%	31.4	11.4\%	73.2	26.7\%	274.4	428.7
$2008{ }^{\text {r }}$	36.5	12.7\%	142.5	49.7\%	0.0	0.0\%	36.2	12.6\%	71.6	25.0\%	286.9	438.9
2009 r	32.4	12.0\%	135.0	50.2\%	0.0	0.0\%	31.9	11.9\%	69.8	25.9\%	269.2	415.2
$2010{ }^{\text {r }}$	28.3	11.0\%	124.9	48.7\%	0.0	0.0\%	30.7	12.0\%	72.8	28.4\%	256.6	409.3
2011 ${ }^{1}$	27.5	10.3\%	131.3	49.4\%	0.0	0.0\%	34.6	13.0\%	72.5	27.3\%	265.8	410.7
2012 ${ }^{\text {p }}$	24.6	10.2\%	114.7	47.6\%	0.0	0.0\%	29.9	12.4\%	71.7	29.8\%	240.9	380.3

[^11]RESIDENTIAL END-USE ENERGY 9.4\% IN 2012

Residential end use energy decreased 9.4 percent in 2012. Natural gas continues to be the dominant fuel used in Wisconsin homes (47.6 percent), providing just under half of the end use energy used.

Consumption of all fuels in the residential sector declined in 2012electricity, 1.1 percent; renewables, 13.5 percent; natural gas, 12.6 percent; and petroleum, 10.7 percent.

Between 1970 and

2012, petroleum use in the residential sector declined 77.2 percent.

Wisconsin Commercial Energy Use, by Type of Fuel

1970-2012 TRILLIONS OF BTU

1970-2012 TRILLIONS OF BTU AND PERCENT OF TOTAL

Year	Petroleum ${ }^{\text {c }}$		Natural Gas		Coal		Renewables ${ }^{\text {a }}$		Electricity		Total End Use	Total Resource ${ }^{\text {b }}$
$1970{ }^{\text {r }}$	31.5	28.3\%	42.2	38.0\%	17.7	15.9\%	0.2	0.2\%	19.6	17.6\%	111.2	149.3
$1975{ }^{\text {r }}$	27.5	22.8\%	57.0	47.2\%	7.1	5.9\%	0.2	0.2\%	28.8	23.9\%	120.6	182.0
$1980{ }^{\text {r }}$	14.6	12.3\%	61.4	51.6\%	4.4	3.7\%	0.2	0.2\%	38.4	32.3\%	119.0	198.5
$1985{ }^{\text {r }}$	19.5	15.3\%	59.8	46.9\%	4.4	3.5\%	0.2	0.2\%	43.6	34.2\%	127.6	220.0
$1990{ }^{\text {r }}$	14.1	10.1\%	66.8	47.8\%	4.5	3.2\%	0.3	0.2\%	54.0	38.6\%	139.6	270.0
$1995{ }^{\text {r }}$	6.7	4.3\%	86.0	54.2\%	3.8	2.4\%	0.6	0.3\%	61.6	38.8\%	158.7	306.4
$2000{ }^{\text {r }}$	9.5	5.6\%	82.1	48.3\%	4.8	2.8\%	0.5	0.3\%	73.1	43.0\%	170.0	336.2
$2005{ }^{\text {r }}$	9.1	5.2\%	85.9	49.0\%	4.8	2.7\%	0.7	0.4\%	75.0	42.7\%	175.6	337.2
$2006{ }^{\text {r }}$	5.7	3.3\%	86.2	49.7\%	4.8	2.8\%	1.0	0.6\%	75.9	43.7\%	173.6	322.6
$2007{ }^{\text {r }}$	6.0	3.3\%	89.1	49.8\%	3.9	2.2\%	1.5	0.8\%	78.6	43.9\%	179.1	344.7
$2008{ }^{\text {r }}$	7.6	4.1\%	94.9	51.2\%	2.7	1.5\%	1.7	0.9\%	78.4	42.3\%	185.4	351.8
2009 r	5.6	3.2\%	90.2	51.4\%	2.0	1.1\%	2.7	1.6\%	75.1	42.7\%	175.6	332.6
$2010{ }^{\text {r }}$	3.8	2.3\%	81.4	48.9\%	2.2	1.3\%	2.3	1.4\%	76.8	46.2\%	166.5	327.7
2011 ${ }^{\text {r }}$	4.7	2.7\%	85.8	50.0\%	1.8	1.1\%	2.2	1.3\%	77.2	45.0\%	171.6	325.7
$2012{ }^{\text {p }}$	4.5	2.8\%	76.6	47.1\%	1.5	0.9\%	2.6	1.6\%	77.6	47.6\%	162.9	313.7

a Renewables includes solar, wood, biomass, wind, hydro and biogas.
b Includes energy resources (and losses) attributable to electricity generation.
c Changes in petroleum consumption figures are due in-part to a historical revision of propane consumption data. The propane dataset was revised to bring it in line with federal volumes.
p Preliminary estimates.
r Revised due to revisions in contributing tables.
Source: Compiled from tables in this publication for Wisconsin petroleum, natural gas, coal, renewables and electricity use, by economic sector, and for Wisconsin electric utility energy use.

Wisconsin Industrial Energy Use, by Type of Fuel

1970-2012 TRILLIONS OF BTU

1970-2012 TRILLIONS OF BTU AND PERCENT OF TOTAL

Year	Petroleum ${ }^{\text {c }}$		Natural Gas		Coal		Renewables ${ }^{\text {a }}$		Electricity		Total End Use	Total Resource ${ }^{\text {b }}$
$1970{ }^{\text {r }}$	21.1	6.9\%	147.1	47.9\%	97.1	31.6\%	10.4	3.4\%	31.4	10.2\%	307.0	368.0
$1975{ }^{\text {r }}$	19.3	6.9\%	169.1	60.8\%	40.9	14.7\%	12.3	4.4\%	36.6	13.2\%	278.2	356.1
$1980{ }^{\text {r }}$	13.2	5.0\%	144.5	54.8\%	47.2	17.9\%	16.2	6.2\%	42.5	16.1\%	263.6	351.7
$1985{ }^{\text {r }}$	2.8	1.1\%	126.1	51.2\%	51.4	20.9\%	18.4	7.5\%	47.6	19.3\%	246.3	347.1
$1990{ }^{\text {r }}$	8.1	3.1\%	122.6	46.9\%	51.9	19.8\%	21.0	8.0\%	58.0	22.2\%	261.7	401.9
$1995{ }^{\text {r }}$	10.8	3.7\%	147.6	50.3\%	47.2	16.1\%	15.2	5.2\%	72.7	24.8\%	293.4	467.8
$2000{ }^{\text {r }}$	14.8	4.8\%	153.4	50.1\%	43.0	14.0\%	14.9	4.9\%	80.3	26.2\%	306.4	489.2
$2005{ }^{\text {r }}$	16.6	5.6\%	132.3	44.7\%	45.1	15.3\%	15.1	5.1\%	86.6	29.3\%	295.7	482.3
$2006{ }^{\text {r }}$	14.6	5.1\%	119.7	42.0\%	46.7	16.4\%	17.4	6.1\%	86.3	30.3\%	284.7	454.2
$2007{ }^{1}$	16.4	5.6\%	122.8	41.9\%	46.6	15.9\%	20.2	6.9\%	86.8	29.6\%	292.8	475.8
$2008{ }^{\text {r }}$	11.8	4.1\%	129.6	45.2\%	45.5	15.9\%	15.8	5.5\%	84.2	29.3\%	286.9	465.7
$2009{ }^{\text {r }}$	6.0	2.3\%	121.4	46.5\%	41.1	15.8\%	16.2	6.2\%	76.4	29.3\%	261.1	420.8
$2010{ }^{\text {r }}$	3.6	1.3\%	122.6	46.0\%	42.1	15.8\%	18.3	6.8\%	80.0	30.0\%	266.6	434.6
$2011{ }^{\text {r }}$	3.4	1.2\%	128.6	47.2\%	41.0	15.0\%	19.6	7.2\%	79.9	29.3\%	272.5	432.1
$2012{ }^{\text {p }}$	4.2	1.6\%	126.7	47.8\%	34.9	13.2\%	18.8	7.1\%	80.4	30.3\%	265.0	421.4

a Renewables includes hydro, wood, wind, biogas and biomass.
b Includes energy resources (and losses) attributable to electricity generation.
c Changes in petroleum consumption figures are due in-part to a historical revision of propane consumption data. The propane dataset was revised to bring it in line with federal volumes.
p Preliminary estimates.
r Revised due to revisions in contributing tables.
Source: Compiled from tables in this publication for Wisconsin petroleum, natural gas, coal, renewables and electricity use, by economic sector, and for Wisconsin electric utility energy use.

INDUSTRIAL
END-USE
ENERGY
2.8\%

IN 2012

End use energy consumption in the industrial sector decreased 2.8 percent in 2012, following an increase of 2.2 percent in 2011.

The major industrial energy sources are natural gas (47.8 percent) and electricity (30.3 percent), trailed by coal (13.2 percent), renewables (7.1 percent) and petroleum
(1.6 percent).

The use of natural gas, coal and renewables declined in the industrial sector by 1.5, 14.8 and 4.0 percent, respectively. Electricity consumption increased by 0.7 percent, and petroleum saw a 22.6 percent jump.

Wisconsin Energy Use for Electricity Generation, in Btu, by Type of Fuel

1970-2012 TRILLIONS OF BTU

1970-2012 TRILLIONS OF BTU AND PERCENT OF TOTAL

Year	Petroleum		Natural Gas		Coal ${ }^{\text {a }}$		Renewables		Nuclear ${ }^{\text {b }}$		Electric Imports ${ }^{\text {c }}$		Hydro		Totald 248.4
1970	7.9	3.2\%	31.1	12.5\%	231.1	93.0\%	4.8	1.9\%	1.7	0.7\%	-28.2	-11.4\%	4.8	1.9\%	
1975	7.8	2.3\%	19.8	5.9\%	210.5	63.0\%	5.1	1.5\%	111.2	33.3\%	-20.4	-6.1\%	5.1	1.5\%	333.9
1980	4.8	1.2\%	14.1	3.6\%	270.7	68.4\%	5.6	1.4\%	107.0	27.0\%	-6.5	-1.6\%	5.6	1.4\%	395.8
1985	1.4	0.3\%	1.4	0.3\%	317.7	71.5\%	7.0	1.6\%	118.6	26.7\%	-1.8	-0.4\%	7.0	1.6\%	444.2
1990	1.0	0.2\%	2.4	0.4\%	354.5	61.8\%	6.9	1.2\%	121.2	21.1\%	87.7	15.3\%	6.1	1.1\%	573.7
1995	0.8	0.1\%	10.1	1.5\%	412.4	61.3\%	7.7	1.1\%	118.5	17.6\%	123.0	18.3\%	7.2	1.1\%	672.5
2000	1.6	0.2\%	21.4	3.0\%	471.4	65.2\%	7.0	1.0\%	123.8	17.1\%	98.1	13.6\%	6.0	0.8\%	723.3
2005	1.9	0.2\%	59.4	7.8\%	481.7	63.6\%	7.2	1.0\%	81.8	10.8\%	125.4	16.6\%	5.1	0.7\%	757.4
2010	0.5	0.1\%	43.1	5.9\%	478.7	65.9\%	12.6	1.7\%	143.4	19.7\%	48.6	6.7\%	6.9	1.0\%	726.9
$2011{ }^{1}$	0.5	0.1\%	48.4	6.9\%	448.0	63.8\%	13.6	1.9\%	124.8	17.8\%	66.5	9.5\%	6.6	0.9\%	701.9
2012 ${ }^{\text {p }}$	0.6	0.1\%	88.6	12.8\%	377.5	54.6\%	12.8	1.9\%	105.7	15.3\%	106.4	15.4\%	4.6	0.7\%	691.6

a Includes petroleum coke.
b Based on 10,800 Btu per kWh.
c Estimated assuming 11,300 Btu of resource energy per kWh imported into Wisconsin. Numbers in parentheses and negative percentages indicate resource energy used in Wisconsin to produce electricity that was exported.
d Percentage totals may not add to 100 due to rounding.
p Preliminary estimates.
r Revised.
Source: Public Service Commission of Wisconsin, Accounts and Finance Division, Statistics of Wisconsin Public Utilities, Bulletin \#8 (1970-1994);
U.S. Department of Agriculture, Rural Electrification Administration, Annual Statistical Report, REA Bulletin 1-1 (1970-1995); Wisconsin Department of Natural Resources, Annual Survey of Point Source Emissions, unpublished (1971-2012); American Gas Association, Gas Facts (1970-1995); U.S. Department of Energy, Energy Information Administration, Electric Power Monthly, [DOE/EIA-0226(2013/05)] (May 2013); Public Service Commission of Wisconsin, unpublished data (2005-2012); telephone survey of wastewater treatment facilities and landfills on biogas production (2007-2012).

Wisconsin Agricultural Energy Use, in Btu, by Type of Fuel

1970-2012 TRILLIONS OF BTU

1970-2012 TRILLIONS OF BTU AND PERCENT OF TOTAL

Year	Motor Gasoline	Diesel Fuel ${ }^{\text {a }}$	LPG	Other Fuel ${ }^{\text {b }}$	Total Petroleum		Electricity ${ }^{\text {c }}$		Natural Gas ${ }^{\text {d }}$		Total End Use	Total Resource Use
1970	7.2	8.4	2.5		18.1	83.8\%	3.5	16.2\%			21.6	28.4
1975	6.8	9.1	2.9		18.8	82.0\%		18.0\%			22.9	31.7
1980	4.1	13.8	3.5		21.4	80.3\%	5.3	19.7\%			26.7	37.5
1985	2.4	13.6	3.3		19.3	76.4\%	6.0	23.6\%			25.2	37.9
1990	1.3	12.3	2.5		16.0	74.0\%	5.6	26.0\%			21.6	35.2
1995	0.9	11.8	3.0		15.6	74.1\%	5.4	25.9\%			21.0	34.1
2000	0.7	11.5	2.4		14.7	73.4\%	5.3	26.6\%			20.0	32.0
$2005{ }^{\text {e }}$	3.9	7.2	2.2	0.3	13.6	42.2\%	5.5	17.1\%	1.3	3.9\%	20.3	32.1
2010	3.1	12.4	2.7	0.2	18.4	51.9\%	5.0	14.0\%	1.6	4.6\%	25.1	35.5
$2011{ }^{1}$	2.7	11.7	2.2	0.2	16.8	50.8\%	4.6	13.9\%	2.5	7.5\%	23.9	33.2
$2012{ }^{\text {p }}$	2.8	13.5	2.3	0.1	18.7	52.3\%	5.2	14.5\%	1.8	4.9\%	25.7	35.7

a Includes other light distillates, through 2005.
b This fuel is primarily distillate and kerosene, but may include small amounts of coal and wood.
c Includes energy resources (and losses) attributed to electricity generation.
d Natural gas consumption for 2008 reflects the high price of natural gas in that year, as well as the inclusion of nurseries and greenhouses in the sample.
e Starting in 2005, figures in this table reflect a shift from a per acre approach to gathering fuel data to new data resources for petroleum fuels. Previous to 2005, distillate and kerosene data were included in the diesel figure.
p Preliminary estimates.
r Revised.

Source: Wisconsin Department of Administration, Division of Energy, based on U.S. Department of Agriculture, Energy and U.S. Agriculture: 1974 Data Base (September 1976), 1978 Census of Agriculture (1980) and Farm Production Expenditures (1980-1984); Wisconsin Department of Agriculture, Trade, and Consumer Protection, Wisconsin Agricultural Statistics (1974-2009) and Wisconsin Dairy Facts (1982-2006); Wisconsin Department of Revenue fuels sales and tax data (1991-2012); National Agriculture Statistics Service, unpublished expenditure data (2005-2012); United States Department of Agriculture, Economic Research Service data, http://www.ers.usda.gov/data/FarmIncome (2005-2012); Energy Information Administration, petroleum navigator, http://www.eia.gov/petroleum/data.cfm (2005-2012).

AGRICULTURAL
END-USE ENERGY 7.1\% IN 2012

Agricultural energy end use increased by 7.1 percent in 2012.

Energy use in this sector is affected by changes in mechanization and automation, and by advances in technology such as biodiesel. Agricultural sector energy use accounted for 2.3 percent of total end use energy in Wisconsin.

2011 reflects the first year that natural gas is reported in the agriculture sector. Natural gas is used primarily for space heating and crop drying, along with liquefied propane gas (LPG).

Wisconsin Agricultural Energy Use, in Gallons and kWh, by Type of Fuel

Although farmers use
manure digesters and
other forms of energy
generation such as
biomass, and biodiesel
to power and heat their
farm, their primary
energy comes from
petroleum sources
(72.9 percent).
A

Year	Motor Gasoline	Diesel ${ }^{\text {a }}$	LPG	Other Fuels ${ }^{\text {b }}$	$\begin{aligned} & \text { Total } \\ & \text { Petroleum } \end{aligned}$	Electricity (Millions of kWh)
1970	58.0	60.7	26.2		144.9	1,028
1975	54.3	65.8	30.1		150.2	1,210
1980	33.0	99.3	36.9		169.2	1,539
1985	19.1	97.8	34.6		151.5	1,745
1990	10.1	88.5	25.9		124.5	1,645
1995	6.9	85.0	30.9		122.8	1,595
1996	6.3	84.0	36.8		127.1	1,585
1997	6.1	81.9	33.1		121.1	1,575
1998	6.0	82.2	24.2		112.4	1,565
1999	6.1	84.9	27.6		118.6	1,560
2000	5.8	83.1	25.3		114.2	1,555
2001	5.7	81.0	23.5		110.2	1,550
2002	5.8	82.7	24.0		112.6	1,545
2003	6.0	84.2	22.8		113.0	1,595
2004	5.8	81.5	24.1		111.4	1,501
$2005{ }^{\text {c }}$	31.2	52.1	22.6	1.9	107.9	1,606
2006	25.9	80.0	27.1	2.2	135.2	1,574
2007	29.6	89.1	28.4	1.9	149.0	1,379
2008	23.6	83.9	31.8	2.0	141.3	1,486
2009	29.5	98.1	37.8	4.8	170.3	1,443
2010	24.8	89.3	28.7	1.7	144.5	1,463
2011	21.9	84.6	22.5	1.5	130.5	1,351
2012 ${ }^{\text {p }}$	22.4	97.2	24.0	0.9	144.5	1,520

a Fuel oil and kerosene, through 2004.
b This fuel is primarily distillate and kerosene, but may include small amounts of coal and wood.
c The State Energy Office instituted a new method of data collection for fuels used in the agricultural sector. Starting in 2005, agricultural sector data have been revised to reflect the new data collection method. Previous to 2005, kerosene and distillates were included in the diesel figure.
p Preliminary estimates.
r Revised.
Source: Wisconsin Department of Administration, Division of Energy, based on U.S. Department of Agriculture, Energy and U.S. Agriculture: 1974 Data Base (September 1976), 1978 Census of Agriculture (1980) and Farm Production Expenditures (1980-1984); Wisconsin Department of Agriculture, Trade, and Consumer Protection, Wisconsin Agricultural Statistics (1974-2009) and Wisconsin Dairy Facts (1982-2006); and Wisconsin Department of Revenue, Motor Vehicle Fuel Tax Statistics (1991-2012); National Agriculture Statistics Service, unpublished expenditure data (2005-2012); United States Department of Agriculture, Economic Research Service data, http://www.ers.usda.gov/data/FarmIncome (2005-2012); Energy Information Administration, petroleum navigator, http://www.eia.gov/petroleum/data.cfm (2005-2012).

Wisconsin Transportation Energy Use, in Btu, by Type of Fuel

1970-2012 TRILLIONS OF BTU

Year	Motor Gasoline ${ }^{\text {a }}$	Ethanol	Diesel Fuel	Aviation		Rail Distillate \& Residual	LPG	Natural Gas ${ }^{\text {b }}$	Total
				Gasoline	Jet Fuel				
1970	236.2	0.0	17.3	0.7	7.7	9.3	NA		271.2
1975	267.8	0.0	28.4	0.8	9.8	7.2	NA		314.0
1980	266.4	0.0	42.6	0.9	11.0	8.3	NA		329.2
1985	251.2	0.1	49.3	0.6	8.4	4.8	NA		314.5
1990	266.6	0.7	65.2	0.6	11.0	4.3	NA		348.3
1995	281.8	4.1	84.7	0.7	10.6	5.2	0.6		387.7
2000	302.4	7.9	95.6	0.8	11.7	5.0	0.5		424.0
2005	304.9	10.4	93.1	0.5	14.3	5.5	0.3	0.0238	428.9
2006	295.5	11.0	97.2	0.4	13.9	5.9	0.3	0.0247	424.3
2007	300.2	13.6	95.6	0.4	12.8	6.2	0.2	0.0237	429.0
2008	284.7	18.3	96.0	0.3	13.8	4.8	0.2	0.0199	418.2
2009	281.5	19.4	83.1	0.2	14.1	4.2	0.2	0.0204	402.8
2010	288.4	21.6	91.1	0.3	13.1	4.6	0.2	0.0346	419.4
$2011{ }^{1}$	285.7	19.2	91.0	0.3	11.3	5.0	0.2	0.0630	412.7
2012 ${ }^{\text {p }}$	273.4	25.1	105.7	0.4	8.5	7.0	0.2	0.1698	420.3

a Excludes ethanol.
b Compressed natural gas shown in gasoline gallon equivalents (GGE). Assumes energy content of one standard GGE is 114,818.76 Btus.
p Preliminary estimate.
r Revised.
NA - Not available.
Source: Wisconsin Department of Commerce, Bureau of Petroleum Inspection, Report on Petroleum Products Inspected and Delivered to Wisconsin (1970-1995); Wisconsin Department of Revenue, Motor Vehicle Fuel Tax Statistics (1970-2012) and Petroleum Supply Annual, DOE/EIA-3340 (1982-2012); U.S. Department of Energy, Form EIA-782C,"Monthly Report of Petroleum Products Sold for Consumption" (1983-2012); Wisconsin State Energy Office surveys of airport fixed base operators (2007-2009) and railways (2007-2012).
transportation ENERGY USE 4.3\%

Transportation energy use increased 1.9 percent in 2012. Motor gasoline use decreased 4.3 percent, while
ethanol use increased 31.0 percent, following 2011 which saw the first decrease in ethanol consumption since ethanol was introduced to Wisconsin in 1982.

Diesel fuel is used primarily for trucking freight. Diesel fuel use increased 16.1 percent. Transportation activities consume 37.7 percent of Wisconsin's total end use energy, accounting for 88.3 percent of petroleum use.

Wisconsin Transportation Energy Use, in Gallons, by Type of Fuel

Wisconsin is seeing a growing use of alternative vehicle fuels. Compressed natural gas (CNG), which burns cleaner than gasoline and is used primarily in heavy-duty fleets, saw a 175.0 percent increase over 2011, while propane (LPG) saw an increase of 3.1 percent.

CNG can be produced from fossil fuel sources, or from biological sources as BioCNG. CNG and BioCNG are measured in gasoline gallon equivalents (GGE), and are available from a variety of fueling stations across the state. See http://www.stateenergyoffice.wi.gov for more information on natural gas as a transportation fuel.

1970-2012 MILLIONS OF GALLONS

Year	Motor Gasoline ${ }^{\mathrm{a}}$	Ethanol	Diesel Fuel	Aviation		Distillate \& Residual		LPG	Natural Gas ${ }^{\text {b }}$	Total
				Gasoline	Jet Fuel	Rail	Vessel			
1970	1,889.1	0.0	124.8	5.9	56.7	49.2	17.0	NA		2,142.7
1975	2,142.8	0.0	205.1	6.7	72.4	36.6	14.1	NA		2,477.7
1980	2,130.7	0.0	307.1	7.0	81.4	44.8	14.8	NA		2,585.8
1985	2,009.7	1.5	356.9	4.5	62.2	27.1	7.4	NA		2,469.3
1990	2,124.5	8.3	471.1	5.0	81.6	29.1	9.0	NA		2,728.6
1995	2,254.1	48.5	612.5	5.6	78.6	35.1	6.9	6.1		3,047.3
1996	2,307.8	56.8	624.6	5.7	82.0	38.4	3.7	6.0		3,125.0
1997	2,345.4	57.5	657.6	5.8	84.0	34.1	0.0	5.8		3,190.3
1998	2,398.4	71.5	681.0	5.9	85.0	31.9	0.5	5.7		3,280.0
1999	2,461.5	75.4	696.3	6.1	87.4	37.0	0.0	5.1		3,368.8
2000	2,419.4	93.8	691.2	6.0	87.0	35.9	0.0	5.3		3,338.6
2001	2,438.6	85.9	687.7	5.9	85.0	35.2	0.0	4.6		3,342.9
2002	2,523.0	88.2	698.9	4.9	88.2	36.9	0.0	4.0		3,444.1
2003	2,538.7	100.9	692.1	4.3	86.1	33.7	0.0	3.8		3,459.6
2004	2,545.6	102.5	738.5	4.2	92.5	35.7	0.0	3.7		3,522.7
2005	2,439.2	123.0	672.7	4.1	105.7	35.1	0.0	3.0	0.208	3,383.0
2006	2,364.1	130.4	702.6	3.5	102.9	37.2	0.0	3.2	0.215	3,344.2
2007	2,401.7	161.2	691.3	2.8	94.6	43.2	0.0	2.3	0.207	3,397.4
2008	2,277.3	217.0	693.9	2.6	102.4	34.7	0.0	2.4	0.174	3,330.5
2009	2,252.3	229.7	600.4	1.8	104.7	30.1	0.0	2.2	0.178	3,221.4
2010	2,307.6	255.4	658.8	2.3	96.9	33.3	0.0	2.3	0.302	3,356.8
$2011{ }^{1}$	2,285.5	227.1	657.9	2.5	84.0	35.8	0.0	1.6	0.549	3,295.0
2012 ${ }^{\text {p }}$	2,186.9	297.5	764.1	3.2	62.8	50.2	0.0	1.6	1.509	3,367.8

a Excludes ethanol. See adjacent column for amounts of ethanol.
b Compressed natural gas shown in gasoline gallon equivalents (GGE). Assumes that the energy content of one standard GGE is $114,818.76$ Btus.
p Preliminary estimate.
r Revised.
NA - Not available.
Source: Wisconsin Department of Commerce, Bureau of Petroleum Inspection, Report on Petroleum Products Inspected and Delivered to Wisconsin (1970-1995); Wisconsin Department of Revenue, Motor Vehicle Fuel Tax Statistics (1970-2012) and Petroleum Supply Annual, DOE/EIA-3340 (1982-2012); U.S. Department of Energy, Form EIA-782C, "Monthly Report of Petroleum Products Sold Into States for Consumption" (1983-2012); Wisconsin State Energy Office surveys of airport fixed base operators (2000-2009) and railways (2000-2012).

CHAPTER 2

Energy Use by Type of Fuel

Wisconsin Petroleum Use, by Economic Sector

OVERALL
PETROLEUM
Overall petroleum use
measured in British
thermal units (Btu)
increased by 0.3 percent
in 2012. Eighty-eight
percent of the petroleum
used in Wisconsin was in
processing plants; these
are classified in the
commercial sector.
which saw an increase
of 0.4 percent.
All numbers in the
petroleum sector
have changed due to
significant revisions to
propane consumption

1970-2012 TRILLIONS OF BTU AND PERCENT OF TOTAL

$\begin{aligned} & \text { Year } \\ & \text { 1970r } \end{aligned}$	Residential		Commercial		Industrial		Agricultural ${ }^{\text {a }}$		Transportation ${ }^{\text {b }}$		Electric Utility		Total457.7	Total End Use 449.8
	107.9	23.6\%	31.5	6.9\%	21.1	4.6\%	18.1	4.0\%	271.2	59.3\%	7.9	1.7\%		
$1975{ }^{\circ}$	87.6	18.4\%	27.5	5.8\%	19.3	4.1\%	18.8	4.0\%	314.0	66.1\%	7.8	1.6\%	475.0	467.2
1980	71.2	15.7\%	14.6	3.2\%	13.2	2.9\%	21.4	4.7\%	329.2	72.4\%	4.8	1.1\%	454.4	449.6
$1985{ }^{5}$	58.6	14.1\%	19.5	4.7\%	2.8	0.7\%	19.3	4.6\%	314.4	75.6\%	1.4	0.3\%	416.0	414.6
1990'	51.4	11.7\%	14.1	3.2\%	8.1	1.8\%	16.0	3.7\%	346.6	79.3\%	1.0	0.2\%	437.2	436.2
$1995{ }^{\circ}$	48.4	10.4\%	6.7	1.4\%	10.8	2.3\%	15.6	3.3\%	383.6	82.3\%	0.8	0.2\%	465.9	465.1
1996 ${ }^{\text {r }}$	52.4	10.9\%	6.8	1.4\%	12.8	2.6\%	16.0	3.3\%	392.9	81.6\%	0.9	0.2\%	481.8	480.8
$1997{ }^{1}$	47.6	9.7\%	8.5	1.7\%	14.5	3.0\%	15.3	3.1\%	401.6	82.1\%	1.5	0.3\%	489.0	487.4
1998 ${ }^{\text {r }}$	38.5	7.9\%	10.3	2.1\%	13.7	2.8\%	14.5	3.0\%	411.3	83.9\%	1.8	0.4\%	490.1	488.3
1999	42.3	8.3\%	10.3	2.0\%	16.0	3.2\%	15.2	3.0\%	422.2	83.1\%	2.0	0.4\%	508.1	506.1
$2000{ }^{\prime}$	40.1	8.1\%	9.5	1.9\%	14.8	3.0\%	14.7	2.9\%	416.1	83.8\%	1.6	0.3\%	496.7	495.1
2001	41.3	8.3\%	10.3	2.1\%	13.6	2.7\%	14.2	2.8\%	417.5	83.6\%	2.2	0.4\%	499.1	497.0
$2002{ }^{1}$	38.9	7.7\%	9.8	1.9\%	12.6	2.5\%	14.5	2.9\%	430.1	84.8\%	1.5	0.3\%	507.4	505.9
2003 ${ }^{\prime}$	40.7	7.9\%	11.4	2.2\%	12.7	2.5\%	14.6	2.9\%	430.3	84.1\%	1.8	0.3\%	511.4	509.7
$2004{ }^{\text {r }}$	39.8	7.7\%	9.3	1.8\%	14.8	2.8\%	14.3	2.8\%	438.7	84.6\%	1.8	0.3\%	518.7	516.9
$2005{ }^{5}$	37.8	7.6\%	9.1	1.8\%	16.6	3.3\%	13.6	2.7\%	418.5	84.1\%	1.9	0.4\%	497.4	495.6
$2006{ }^{\text {r }}$	39.3	8.0\%	5.7	1.2\%	14.6	3.0\%	17.2	3.5\%	413.3	84.1\%	1.5	0.3\%	491.6	490.1
2007	36.8	7.4\%	6.0	1.2\%	16.4	3.3\%	19.0	3.8\%	415.4	83.8\%	1.9	0.4\%	495.5	493.6
$2008{ }^{\text {r }}$	36.5	7.7\%	7.6	1.6\%	11.8	2.5\%	17.9	3.8\%	399.9	84.2\%	1.1	0.2\%	474.8	473.7
2009 r	32.4	7.2\%	5.6	1.3\%	6.0	1.3\%	21.6	4.8\%	383.3	85.3\%	0.6	0.1\%	449.5	449.0
2010	28.3	6.3\%	3.8	0.8\%	3.6	0.8\%	18.5	4.7\%	397.8	87.9\%	0.5	0.1\%	452.4	451.9
2011	27.5	6.2\%	4.7	1.1\%	3.4	0.8\%	16.8	3.8\%	393.5	88.1\%	0.5	0.1\%	446.4	445.9
2012 ${ }^{\text {p }}$	24.6	5.5\%	4.5	1.0\%	4.2	0.9\%	18.7	4.2\%	395.1	88.3\%	0.6	0.1\%	447.5	446.9

a $\ln 2005$, the SEO discontinued a per-acre approach to gathering fuel data for the agriculture sector and substituted data from the Wisconsin Department of Revenue and the federal National Agriculture Statistics Service (NASS). Data from NASS were not available previous to 2005.
b These figures do not include any ethanol. In 2011 these figures were historically revised to remove ethanol.
p Preliminary estimates.
r Revised.
Source: Wisconsin Department of Commerce, Bureau of Petroleum Inspection, Report on Petroleum Products Inspected and Delivered to Wisconsin (1970-1995); Wisconsin Department of Revenue, Collection of Petroleum Inspection Fees (1996-2006) and Fuel Tax Statistical Report (1996-2012); State Energy Office phone and email surveys of airport fixed base operators (2000-2009) and railways (2000-2012); US Department of Energy, Form EIA-782C, Monthly Report of Petroleum Products Sold into States for Consumption (1982-2012); US Department of Energy, Form EIA-821 (2003-2012); unpublished data from the National Agriculture Statistics Service (2005-2012); Wisconsin Department of Natural Resources, Annual Survey of Point Source Emissions for propane, unpublished (1995-2012).

Wisconsin Petroleum Use, by Economic Sector

2012 TRILLIONS OF BTU AND PERCENT OF TOTAL

1970-2012 TRILLIONS OF BTU

Wisconsin Petroleum Use, in Btu, by Type of Product

Middle distillate, which	1970-2012 TRILLIONS OF BTU							
percent since 2011, is used both as a heating	Year	Gasoline ${ }^{\text {a,b }}$	Jet Fuel	Light Distillate	Middle Distillate	Residual Fuel Oil	LPG ${ }^{\text {c }}$	Total
fuel in furnaces and	1970 ${ }^{\text {r }}$	244.1	7.7	35.1	123.4	21.9	25.7	457.9
boilers, and as diesel fuel	$1975{ }^{\text {r }}$	275.4	9.8	16.9	133.5	13.3	26.0	474.9
boilers, and as diesel fuel	1980 ${ }^{\text {r }}$	271.3	11.0	11.3	124.7	11.0	25.2	454.5
in trucks. Light distillate,	1985 ${ }^{\text {r }}$	254.2	8.4	13.9	114.7	1.7	23.1	416.0
which increased by 12.8	1990 ${ }^{\text {r }}$	267.4	11.0	10.9	120.0	6.2	21.7	437.2
percent since 2011,	$1995{ }^{\text {r }}$	283.3	10.6	11.1	126.7	4.5	29.7	465.9
includes kerosene and	$1996{ }^{\text {r }}$	290.0	11.1	12.1	129.6	5.8	33.8	482.2
is primarily used as a	$1997{ }^{\text {r }}$	294.7	11.3	12.8	132.1	6.2	31.8	489.0
thinner during periods	$1998{ }^{\text {r }}$	301.3	11.5	13.0	133.5	6.5	24.3	490.1
of cold weather.	1999r	309.2	11.8	13.8	140.0	7.7	25.5	508.1
of cold weather.	$2000{ }^{\prime}$	303.9	11.7	12.9	136.6	6.9	24.7	496.7
All numbers for propane	$2001{ }^{1}$	306.3	11.5	12.9	137.2	7.0	24.4	499.1
(LPG) have been	$2002{ }^{2}$	316.7	11.9	12.4	134.7	7.1	24.6	507.4
historically revised to	$2003{ }^{\prime}$	318.6	11.6	12.0	138.1	6.0	25.1	511.4
	$2004{ }^{\text {r }}$	319.4	12.5	12.5	141.7	7.0	25.6	518.7
incorporate commercial	$2005{ }^{\text {r }}$	309.3	14.3	11.4	128.7	8.6	25.2	497.5
and industrial data	$2006{ }^{\text {r }}$	299.2	13.9	11.4	133.0	5.2	29.0	491.6
from the Department of	$2007{ }^{1}$	304.3	12.8	10.3	133.7	5.9	28.5	495.5
Natural Resources' Point	2008	287.9	13.8	10.6	130.7	3.9	27.9	474.8
Source Emissions survey,	2009 r	285.5	11.8	9.0	109.7	1.8	29.4	447.1
and to reflect federally	$2010{ }^{\text {r }}$	291.8	13.1	9.5	111.9	0.7	25.4	452.5
reported volumes of	$2011{ }^{1}$	288.7	11.3	9.3	111.3	0.7	24.9	446.3
propane transported	2012^{p}	276.6	8.5	10.5	127.9	0.7	23.3	447.5

a Includes both vehicle and aviation gasoline.
b Does not include ethanol. In 2011 these figures were historically revised to remove ethanol. Ethanol use in motor gasoline is shown in the Renewable Energy chapter and later in this chapter.
c Liquefied petroleum gas (propane).
p Preliminary estimates.
r Revised.
Source: Wisconsin Department of Commerce, Bureau of Petroleum Inspection, Report on Petroleum Products Inspected and Delivered to Wisconsin (1970-1995); Wisconsin Department of Revenue, Collection of Petroleum Inspection Fees (1996-2006) and Fuel Tax Statistical Report (1996-2012); U.S. Department of Energy, Form EIA-782C, Monthly Report of Petroleum Products Sold into States for Consumption,
http://www.eia.gov/oil_gas/petroleum/data_publications/prime_supplier_report/psr.html (1983-2012); WI State Energy Office telephone and email surveys of airport fixed base operators (2000-2009) and railways (2000-2012); unpublished expenditure data from the National Agriculture Statistics Service (2005-2012); Wisconsin Department of Natural Resources, Annual Survey of Point Source Emissions for propane, unpublished (1995-2012).

Wisconsin Petroleum Use, in Gallons, by Type of Product

1970-2012 MILLIONS OF GALLONS

Year	Gasoline ${ }^{\text {a }, \mathrm{b}}$	Jet Fuel	Light Distillate	Middle Distillate	Residual Fuel 0il	LPGC	Total
1970 ${ }^{\circ}$	1,953.0	56.7	260.2	889.7	146.2	269.1	3,574.9
$1975{ }^{\text {r }}$	2,203.5	72.4	125.0	962.8	88.8	272.6	3,725.1
1980 ${ }^{\text {r }}$	2,170.5	81.4	83.4	899.4	73.5	264.2	3,572.4
1985	2,033.3	62.2	103.3	826.9	11.2	242.2	3,279.1
1990 ${ }^{\text {r }}$	2,139.5	81.6	80.8	864.9	41.2	227.0	3,435.1
$1995{ }^{\text {r }}$	2,266.6	78.6	82.0	913.7	30.4	310.7	3,681.9
1996r	2,319.8	82.0	89.4	934.2	38.7	353.8	3,817.9
$1997{ }^{\text {r }}$	2,357.4	84.0	95.1	952.6	41.7	332.9	3,863.7
1998 ${ }^{\text {r }}$	2,410.3	85.0	96.0	962.6	43.7	255.0	3,852.6
1999r	2,473.7	87.4	102.5	1,009.5	51.6	267.2	3,991.9
$2000{ }^{\circ}$	2,431.2	87.0	95.7	984.6	45.8	258.9	3,903.1
$2001{ }^{1}$	2,450.2	85.0	95.3	988.9	46.7	255.6	3,921.6
$2002{ }^{2}$	2,533.7	88.2	91.9	971.2	47.5	257.6	3,990.1
$2003{ }^{\text {r }}$	2,549.0	86.1	88.7	995.8	40.0	262.8	4,022.5
$2004{ }^{\text {r }}$	2,555.6	92.5	92.3	1,021.9	46.6	268.6	4,077.5
$2005{ }^{\text {r }}$	2,474.6	105.7	84.6	928.1	57.5	263.9	3,914.3
$2006{ }^{\text {r }}$	2,393.6	102.9	84.1	959.0	35.0	303.6	3,878.1
$2007{ }^{5}$	2,434.2	94.6	76.6	963.9	40.1	298.5	3,907.8
2008 ${ }^{\text {r }}$	2,303.5	102.4	78.6	942.0	25.8	292.3	3,744.7
$2009{ }^{\text {r }}$	2,283.7	104.7	66.7	791.0	12.2	308.1	3,566.4
$2010{ }^{\text {r }}$	2,334.7	96.9	70.5	807.1	4.4	266.2	3,579.8
$2011{ }^{1}$	2,309.9	84.0	69.2	802.4	4.8	261.3	3,531.7
2012^{p}	2,212.6	62.8	78.0	922.3	4.7	244.3	3,524.7

a Includes both vehicle and aviation gasoline.
b Does not include the ethanol. In 2011, these numbers were historically revised to remove all ethanol. Ethanol use in motor gasoline is shown in the Renewable Energy chapter and later in this chapter.
c Liquefied petroleum gas (propane).
p Preliminary estimates.
r Revised.
Source: Wisconsin Department of Commerce, Bureau of Petroleum Inspection, Report on Petroleum Products Inspected and Delivered to Wisconsin (1970-1995); Wisconsin Department of Revenue, Collection of Petroleum Inspection Fees (1996-2006) and Fuel Tax Statistical Report (1996-2012); U.S. Department of Energy Form EIA-782C, Monthly Report of Petroleum Products Sold into States for Consumption (1983-2012)
http://www.eia.gov/oil_gas/petroleum/data_publications/prime_supplier_report/psr.html; WI State Energy Office telephone and email surveys of airport fixed base operators (2000-2009) and railways (2000-2012); unpublished data from the National Agriculture Statistics Service (2005-2012); Wisconsin Department of Natural Resources, Annual Survey of Point Source Emissions for propane, unpublished (1995-2012).

GASOLINE USE 4.2\%
 JET FUEL 25.3\% LP USE 6.5\%

In 2012, gasoline use decreased by 4.2 percent, jet fuel decreased by 25.3 percent, and LP use decreased by 6.5 percent.

All numbers for propane (LPG) have been historically revised to incorporate commercial and industrial data from the Department of Natural Resources' Point Source Emissions survey, and to reflect federally reported volumes of propane transported into the state

Petroleum Product Deliveries to and Sales in Wisconsin, by Month

In general, gasoline
sales peaked during
the summer vacation
months, while deliveries
of fuels used for heating
(off-road distillate and
LPG) peaked during
winter months.

Figures will not match the consumption figures in earlier pages in this chapter because deliveries do not always translate to sales during the same time frame.

A map of Wisconsin's petroleum pipelines can be found in the Map

Appendix at the back of the book.

2012 THOUSANDS OF GALLONS

Month	Off-Road Distillate ${ }^{\text {a }}$	On-Road Distillate ${ }^{\text {b }}$	LPG ${ }^{\text {c }}$	Gasoline ${ }^{\text {d }}$
January	8,324	67,603	36,375	200,248
February	6,605	56,143	29,560	159,835
March	5,100	62,129	18,526	155,987
April	4,461	58,626	13,149	179,209
May	4,898	64,079	10,233	204,197
June	5,148	46,985	9,408	129,621
July	6,119	48,497	10,097	207,884
August	5,927	91,700	13,005	267,480
September	5,619	70,988	15,333	188,133
October	6,457	41,750	25,919	123,864
November	6,168	68,735	28,683	157,328
December	6,690	86,817	33,995	235,580
Total	71,516	764,051	244,282	2,209,367

[^12]
Wisconsin Production and Use of Ethanol in Reformulated Gasoline, E10 and E85

Year	Production	Consumption			
		RFG ${ }^{\text {a }}$	E10 ${ }^{\text {b }}$	E85 ${ }^{\circ}$	Total
1994	NA	NA	13,331	9	13,340
1995	NA	38,048	10,461	17	48,526
1996	NA	49,784	6,973	36	56,793
1997	NA	49,460	8,012	54	57,526
1998	NA	66,571	4,877	58	71,506
1999	NA	67,400	7,937	63	75,400
2000	NA	70,724	23,080	43	93,847
2001	NA	67,449	18,458	32	85,939
2002	15,529	71,152	17,026	48	88,226
2003	76,947	77,302	23,536	86	100,924
2004	106,886	74,816	27,617	106	102,539
2005	171,764	73,046	49,191	723	122,960
2006	210,386	77,614	50,498	2,302	130,414
2007	283,873	69,963	86,472	4,800	161,235
2008	447,388	68,047	143,849	5,100	216,996
2009	462,022	74,142	150,347	5,200	229,689
2010	438,260	77,968	174,399	2,995	255,362
2011	496,366	76,927	147,704	2,447	227,078
2012 ${ }^{\text {p }}$	474,372	67,286	228,203	2,000	297,489

ETHANOL
In 2012, Wisconsin
ethanol production
decreased 4.4
percent while ethanol
consumption in
Wisconsin increased
31.0 percent.
Reformulated gasoline
saw a decrease of
12.5 percent, E10 an
increase of 54.5 percent,
and E85 a drop of
18.3 percent.
Ethanol is one of the
few energy sources that
Wisconsin exports.

[^13]
Wisconsin Liquefied Petroleum Gas Use, by Economic Sector

In 2012, use of liquefied
petroleum gas (LPG),
also known as propane,
decreased 6.5 percent.
(LPG) have been
historically revised to
incorporate commercial
and industrial data
processing plants; these
are classified in the
commercial sector.
narone the Department of
natural Resources' Point
Source Emissions survey,
and to reflect federally
reported volumes of
propane transported
into the state.

1970-2012 MILLIONS OF GALLONS AND PERCENT OF TOTAL

Year	Residential		Commercial		Industrial		Agricultura ${ }^{\text {a }}$		Transportation		Total
$1970{ }^{\circ}$	239.2	88.9\%	0.3	0.1\%	3.4	1.3\%	26.2	9.7\%	NA	0.0\%	269.1
$1975{ }^{\text {r }}$	238.8	87.6\%	0.3	0.1\%	3.4	1.2\%	30.1	11.0\%	NA	0.0\%	272.6
1980 ${ }^{\text {r }}$	223.9	84.7\%	0.3	0.1\%	3.2	1.2\%	36.9	14.0\%	NA	0.0\%	264.2
1985	204.5	84.4\%	0.2	0.1\%	2.9	1.2\%	34.6	14.3\%	NA	0.0\%	242.2
$1990{ }^{\text {r }}$	198.1	87.2\%	0.2	0.1\%	2.8	1.2\%	25.9	11.4\%	NA	0.0\%	227.0
$1995{ }^{\text {r }}$	270.6	87.1\%	0.3	0.1\%	2.8	0.9\%	30.9	9.9\%	6.1	2.0\%	310.7
$1996{ }^{\text {r }}$	307.5	86.9\%	0.2	0.1\%	3.3	0.9\%	36.8	10.4\%	6.0	1.7\%	353.8
$1997{ }^{1}$	291.2	87.5\%	0.1	0.0\%	2.7	0.8\%	33.1	9.9\%	5.8	1.7\%	332.9
1998 ${ }^{\text {r }}$	222.4	87.2\%	0.1	0.0\%	2.6	1.0\%	24.2	9.5\%	5.7	2.2\%	255.0
1999 r	231.4	86.6\%	0.1	0.0\%	3.0	1.1\%	27.6	10.3\%	5.1	1.9\%	267.2
$2000{ }^{\circ}$	224.5	86.7\%	0.2	0.1\%	3.6	1.4\%	25.3	9.8\%	5.3	2.0\%	258.9
$2001{ }^{1}$	224.3	87.8\%	0.2	0.1\%	3.1	1.2\%	23.5	9.2\%	4.6	1.8\%	255.6
$2002{ }^{2}$	227.2	88.2\%	0.2	0.1\%	2.3	0.9\%	24.0	9.3\%	4.0	1.5\%	257.6
$2003{ }^{\text {r }}$	233.9	89.0\%	0.1	0.1\%	2.1	0.8\%	22.8	8.7\%	3.8	1.5\%	262.8
$2004{ }^{\text {r }}$	237.5	88.4\%	0.1	0.0\%	3.2	1.2\%	24.1	9.0\%	3.7	1.4\%	268.6
$2005{ }^{\text {r }}$	234.8	89.0\%	0.2	0.1\%	3.3	1.3\%	22.6	8.6\%	3.0	1.1\%	263.9
$2006{ }^{1}$	270.6	89.1\%	0.2	0.1\%	2.5	0.8\%	27.1	8.9\%	3.2	1.1\%	303.6
$2007{ }^{1}$	265.7	89.0\%	0.2	0.1\%	2.0	0.7\%	28.4	9.5\%	2.3	0.8\%	298.5
2008 ${ }^{\text {r }}$	253.7	86.8\%	0.5	0.2\%	3.9	1.3\%	31.8	10.9\%	2.4	0.8\%	292.3
2009 r	264.4	85.8\%	0.5	0.2\%	3.2	1.0\%	37.8	12.3\%	2.2	0.7\%	308.1
$2010{ }^{\text {r }}$	230.7	86.6\%	0.6	0.2\%	4.0	1.5\%	28.7	10.8\%	2.3	0.8\%	266.2
$2011{ }^{1}$	231.1	88.4\%	0.4	0.2\%	5.7	2.2\%	22.5	8.6\%	1.6	0.6\%	261.3
$2012{ }^{\text {p }}$	213.4	87.4\%	0.4	0.2\%	4.8	2.0\%	24.0	9.8\%	1.6	0.7\%	244.3

[^14]
Wisconsin Natural Gas Use, by Economic Sector

In 2012, warmer winter weather led to decreased natural gas use in the residential, commercial, industrial, and agricultural sectors. The electric and transportation sectors saw increased consumption.

The total use of natural gas in all sectors increased by 3.0 percent from 2011, and by 33.3 percent over 1990 . Natural gas end-use-where power sector consumption is not counted-is down 8.1 percent from 2011, and 5.2 percent from 1990.

1970-2012 TRILLIONS OF BTU AND PERCENT OF TOTAL

Year	Residential		Commercial ${ }^{\text {a }}$		Industrial		Electric ${ }^{\text {b }}$		Agricultural ${ }^{\text {c }}$		Transportation ${ }^{\text {d }}$		Total	Total End Use
1970	107.0	32.7\%	42.2	12.9\%	147.1	44.9\%	31.1	9.5\%					327.4	296.3
1975	122.4	33.2\%	57.0	15.5\%	169.1	45.9\%	19.8	5.4\%					368.3	348.5
1980	124.0	36.0\%	61.4	17.8\%	144.5	42.0\%	14.1	4.1\%					344.0	329.9
1985	116.9	38.4\%	59.8	19.7\%	126.1	41.4\%	1.4	0.5\%					304.2	302.8
1990	114.7	37.4\%	66.8	21.8\%	122.6	40.0\%	2.4	0.8\%					306.4	304.0
1995	137.5	36.1\%	85.9	22.5\%	147.6	38.7\%	10.1	2.7\%					381.1	371.0
1996	149.8	37.1\%	95.1	23.6\%	151.5	37.5\%	7.4	1.8\%					403.8	396.4
1997	137.3	34.3\%	89.8	22.4\%	157.4	39.3\%	16.0	4.0\%					400.5	384.5
1998	117.2	31.9\%	82.3	22.4\%	143.5	39.0\%	24.6	6.7\%					367.7	343.1
1999	129.1	33.9\%	82.8	21.7\%	147.5	38.7\%	21.5	5.6\%					380.9	359.4
2000	136.4	34.7\%	82.1	20.9\%	153.4	39.0\%	21.4	5.4\%					393.4	372.0
2001	126.4	35.1\%	77.0	21.4\%	134.2	37.3\%	22.6	6.3\%					360.2	337.6
2002	138.2	36.0\%	86.6	22.5\%	138.7	36.1\%	20.7	5.4\%					384.2	363.5
2003	143.2	36.3\%	88.1	22.3\%	138.7	35.2\%	24.3	6.2\%					394.3	370.0
2004	136.1	35.6\%	83.0	21.7\%	142.1	37.1\%	21.4	5.6\%					382.6	361.2
2005	132.9	32.3%	85.9	20.9\%	132.3	32.1%	59.4	14.4\%	1.3	0.3\%	0.02	0.01\%	411.8	352.4
2006	121.9	32.6%	86.2	23.1\%	119.7	32.1%	44.5	11.9\%	1.1	0.3\%	0.02	0.01\%	373.4	328.9
2007	133.0	33.2%	89.1	22.2\%	122.8	30.6\%	54.9	13.7\%	1.1	0.3\%	0.02	0.01\%	401.0	346.1
2008	142.5	34.6\%	94.9	23.0\%	129.6	31.4\%	41.7	10.1\%	3.6	0.9\%	0.02	0.00\%	412.4	370.7
2009	135.0	34.6\%	90.2	23.1\%	121.4	31.1\%	41.6	10.6\%	2.5	0.6\%	0.02	0.01\%	390.8	349.2
2010	124.9	33.4\%	81.4	21.8\%	122.6	32.8\%	43.1	11.5\%	1.6	0.4\%	0.03	0.01\%	373.6	330.5
$2011{ }^{1}$	131.3	33.1\%	85.8	21.6\%	128.6	32.4\%	48.4	12.2\%	2.5	0.6\%	0.06	0.02\%	396.6	348.2
2012 ${ }^{\text {p }}$	114.7	28.1\%	76.6	18.8\%	126.7	31.0\%	88.6	21.7\%	1.8	0.4\%	0.17	0.04\%	408.6	320.0

[^15]In the power sector, natural gas used to generate electricity increased by 83.1 percent. The electric sector includes natural gas used by utilities and independent power producers who generate and sell electricity to other companies.

The transportation sector-which saw an increase of 169.5 percent over 2011—uses compressed natural gas (CNG) and liquefied natural gas (LNG) as vehicle fuels. Increases in natural gas consumption in this sector are due to a growing infrastructure of refueling stations and increasing numbers of trucks and, public and private fleets, using these fuels.

A map of Natural Gas Company Territories and Major Pipelines can be found in the

Map Appendix in this publication.

Wisconsin Natural Gas Use, by Economic Sector

2012 TRILLIONS OF BTU AND PERCENT OF TOTAL

1970-2012 TRILLIONS OF BTU

Wisconsin Natural Gas Sales, by Public Service Commission of Wisconsin Sector

Data presented here are derived from natural gas utility annual reports submitted to the Public Service Commission of Wisconsin. Data collected by the federal Energy Information Administration and the PSCW differ in methodology used to account for natural gas used by a utility for electric generation, resulting in a difference in statewide gas consumption. Figures on this page do not match figures elsewhere in this publication due to different data sources.

1970-2012 TRILLIONS OF BTU

Year	Residential		Commercial, Industrial \& Electric			Total to Ultimate Utility Customers	Commercial, Industrial and Electric Transport Gas	Total Sold and Used ${ }^{\text {c,d }}$
	General	Heating	Firm ${ }^{\text {a }}$	Interruptible ${ }^{\text {b }}$	Heating			
1970	7.6	101.3	27.4	121.9	47.6	324.0	0.0	324.0
1975	6.8	112.4	36.6	135.2	60.6	362.8	0.0	362.8
1980	4.3	116.8	25.0	99.6	62.2	343.5	0.0	343.5
1985	2.8	114.7	13.4	95.6	65.6	306.7	0.0	306.7
1990	2.1	112.1	3.7	32.6	59.8	228.4	75.1	303.5
1995	1.8	135.0	3.3	50.2	78.7	289.9	87.4	377.2
1996	1.9	145.8	3.3	37.6	86.2	294.1	103.3	397.4
1997	1.8	134.2	3.3	23.6	79.3	260.6	133.3	394.0
1998	1.6	113.6	3.2	17.1	66.7	216.4	141.8	358.2
1999	1.6	125.1	3.0	18.3	72.5	231.6	147.0	378.6
2000	1.6	132.0	2.8	16.4	77.8	241.9	147.5	389.4
2001	1.4	123.7	3.2	14.7	70.0	224.5	133.3	357.7
2002	1.4	134.6	4.2	16.2	73.6	244.0	138.2	382.2
2003	1.5	140.2	4.3	12.1	77.6	253.9	136.0	390.0
2004	1.5	133.0	4.3	9.1	73.0	234.8	138.2	373.0
2005	1.4	129.9	3.4	9.6	72.8	239.5	157.3	396.8
2006	1.4	118.7	3.0	8.6	69.9	214.1	145.0	359.1
2007	1.5	129.7	3.3	8.6	74.2	232.4	159.7	392.1
2008	1.7	139.0	3.5	9.7	81.2	247.6	158.1	405.7
2009	1.7	131.7	3.5	9.0	76.7	231.4	153.3	384.8
2010	1.7	121.8	3.1	8.5	70.1	214.5	153.8	368.3
2011	1.8	127.7	3.3	8.3	74.2	226.4	155.6	382.0
2012 ${ }^{\text {p }}$	1.6	111.5	3.1	11.1	64.4	205.6	178.6	384.2

In 2012, natural gas use for residential and nonresidential space heating decreased. Because of its lower cost, transport gas continues to be the preferred method of purchasing gas by large commercial and industrial users. These large users purchase the gas directly from the producers and have the interstate pipelines and local distribution companies transport this gas through their pipeline system for a fee.

Firm natural gas service guarantees no interruptions while interruptible service permits interruption on short notice, generally in peak-load seasons. Natural gas classified under "general" is used for applications other than heating, such as running gas appliances like a stove, dryer or water heater.

[^16]
Wisconsin Natural Gas Sales, by Month

[^17]
Average Number of Natural Gas Customers in Wisconsin, by Public Service Commission of Wisconsin Sector

1970-2012

Year	Residential		Commercial, Industrial \& Electric				Total
	General	Space Heating	Firm	Interruptible	Space Heating	Transportation	
1970	183,695	566,676	13,806	3,104	50,783		818,064
1975	157,684	700,766	11,685	3,716	65,666		939,517
1980	112,700	853,300	10,058	2,206	78,736		1,057,000
1985	90,500	922,500	9,220	2,312	85,468		1,110,000
1990	77,000	1,046,557	9,713	1,257	101,487	740	1,236,754
1995	62,000	1,229,424	7,723	1,426	122,275	569	1,423,417
1996	60,900	1,263,670	7,115	2,159	124,930	803	1,459,577
1997	59,200	1,302,148	6,954	1,405	130,087	1,138	1,500,932
1998	57,900	1,332,168	7,199	1,255	133,854	1,501	1,533,877
1999	56,000	1,370,909	7,221	1,124	135,241	1,999	1,572,494
2000	54,700	1,404,259	7,095	1,005	139,764	2,136	1,608,959
2001	51,500	1,433,036	7,511	1,233	142,844	2,326	1,638,450
2002	49,200	1,465,500	8,208	1,362	147,404	2,448	1,674,122
2003	48,900	1,492,555	8,295	1,396	148,181	2,394	1,701,721
2004	48,300	1,521,419	8,956	1,377	149,323	2,441	1,731,816
2005	45,700	1,546,921	7,673	1,266	152,145	2,509	1,756,214
2006	45,400	1,566,372	6,790	1,234	154,307	2,450	1,776,553
2007	45,900	1,586,300	6,886	1,195	156,131	2,401	1,798,813
2008	45,900	1,600,744	7,002	1,201	158,421	2,371	1,815,639
2009	45,700	1,610,914	6,927	1,209	159,763	2,340	1,826,853
2010	45,800	1,617,783	6,900	1,203	160,151	2,332	1,834,169
2011	45,800	1,626,034	6,931	1,195	160,910	2,342	1,843,212
2012 ${ }^{\text {p }}$	45,700	1,635,301	7,781	495	161,485	2,477	1,853,239

10,027
 NEW CUSTOMERS

Wisconsin gas utilities added 10,027 new customers in 2012. Most new customers-9,267were in the residential sector.

Firm natural gas service guarantees no interruptions while interruptible service permits interruption on short notice, generally in peak-load seasons. Natural gas classified under "general" is used for applications other than heating, such as running gas appliances like a stove, dryer or water heater. Transport gas is gas piped through utility pipelines, but paid for through a direct contract between an industrial user and the natural gas pipeline company.

[^18]
Wisconsin Natural Gas Sales Per Customer, by Public Service Commission of Wisconsin Sector

[^19]
Wisconsin Natural Gas Deliveries, by Pipeline Company

1970-2012 TRILLIONS OF BTU AND PERCENT OF TOTAL

Year	$\begin{gathered} \text { ANR } \\ \text { Pipeline Co. } \end{gathered}$		Viking Gas Trans. Co. ${ }^{\text {b }}$		Natural Gas Pipeline Co. ${ }^{\text {c }}$		Northern Natural Gas Co.		Guardian Pipeline ${ }^{\text {d }}$		Total ${ }^{\text {f }}$ g
1970	289.4	88.2\%	6.0	1.8\%	6.3	1.9\%	26.6	8.1\%			328.3
1975	323.0	88.5\%	5.7	1.6\%	7.1	1.9\%	29.2	8.0\%			365.0
1980	305.5	88.8\%	3.9	1.1\%	7.8	2.3\%	26.8	7.8\%			344.0
1985	265.8	87.4\%	1.2	0.4\%	7.7	2.5\%	29.4	9.7\%			304.1
1990	218.2	72.0\%	6.0	2.0\%	7.4	2.4\%	53.8	17.7\%			303.2
1995	264.3	69.6\%	9.1	2.4\%	23.5	6.2\%	83.1	21.9\%			380.0
1996	269.5	67.7\%	9.9	2.5\%	26.1	6.6\%	92.3	23.2\%			397.8
1997	265.8	68.1\%	10.4	2.7\%	23.1	5.9\%	90.8	23.3\%			390.1
1998	241.0	67.6\%	10.2	2.9\%	19.7	5.5\%	85.5	24.0\%			356.4
1999	256.3	68.8\%	11.4	3.1\%	16.3	4.4\%	88.3	23.7\%			372.3
2000	272.1	69.0\%	11.1	2.8\%	21.0	5.3\%	90.0	22.8\%			394.2
2001	236.4	66.0\%	14.1	3.9\%	23.7	6.6\%	84.1	23.5\%			358.3
2002	267.2	68.7\%	15.1	3.9\%	22.3	5.7\%	82.5	21.2\%	1.9	0.5\%	389.0
2003	257.0	64.6\%	16.0	4.0\%	19.9	5.0\%	84.8	21.3\%	20.3	5.1\%	398.0
2004	241.8	60.3\%	14.8	3.7\%	19.8	4.9\%	84.0	20.9\%	40.8	10.2\%	401.2
2005	253.2	60.9\%	16.1	3.9\%	19.6	4.7\%	84.0	20.2\%	42.9	10.3\%	415.8
2006	219.0	57.2\%	14.6	3.8\%	19.9	5.2\%	88.6	23.2\%	40.6	10.6\%	382.7
2007	249.9	58.9\%	18.8	4.4\%	18.0	4.2\%	88.4	20.8\%	48.9	11.5\%	424.0
2008	258.3	58.4\%	17.9	4.0\%	17.5	4.0\%	94.9	21.4\%	53.9	12.2\%	442.5
2009	243.0	58.8\%	17.6	4.3\%	18.5	4.5\%	80.6	19.5\%	53.5	12.9\%	413.2
2010	226.9	59.9\%	18.8	5.0\%	12.2	3.2\%	77.1	20.3\%	43.9	11.6\%	378.7
2011	237.9	57.7\%	18.8	4.6\%	11.4	2.8\%	78.0	18.9\%	66.1	16.0\%	412.1
2012^{p}	240.8	59.7\%	18.7	4.6\%	6.6	1.6\%	$80.0{ }^{\text {e }}$	19.8\%	57.2	14.2\%	403.3

a Formerly American Natural Resources Pipeline Co
b Formerly Midwest Gas Transmission Co.
c In 1994, Midcon Corporation became part of the Natural Gas Pipeline Co. Prior to 1994, data in this table included delivery information from Midcon Corporation
d The Guardian Pipeline became operational on December 7, 2002
e Estimated.
f Prior to 1990, deliveries represent utility gas sales. Beginning in 1990, deliveries represent total gas used in Wisconsin, including both utility and transported gas deliveries.
\mathbf{g} Total purchases differ from the total sold and used by gas utilities due to inventory changes, utility production from liquefied petroleum gas and some unaccounted gas.
p Preliminary estimates.
Source: Public Service Commission of Wisconsin, Accounts and Finance Division, Statistics of Wisconsin Public Utilities, Bulletin \#8 (1970-1993)
Telephone conversations and unpublished emails with pipeline representatives 1991-2012.

The major supplier of natural gas to Wisconsin, ANR, transports most of its gas from Oklahoma and Louisiana. Northern Natural Gas Company transports its gas to Wisconsin from Texas, Oklahoma, Kansas and Alberta, Canada. Natural Gas Pipeline Company transports gas to Wisconsin primarily from Oklahoma, Louisiana and Texas. However, Viking Gas

Transmission Company's gas originates primarily from Alberta, Canada.

Guardian Pipeline began transporting natural gas to Wisconsin on December 7, 2002.

Wisconsin Coal Use, in Btu, by Economic Sector

Wisconsin's 2012 total coal consumption decreased 15.7 percent from 2011. This is the second year of decrease; in 2011, coal use decreased 6.2 percent from 2010

2012 also saw the second year during which coal use declined in all sectors because of decreased economic activity and increased use of natural gas.

Residential coal use dropped off almost entirely in 2008 and that trend continues.

Commercial sector use of coal is limited primarily to state facilities and large institutions, and dropped by 15.2 percent. The Industrial sector declined by 14.8 percent, and the utility sector saw a drop of 15.8 percent.

Despite recent declines in coal consumption, the

Wisconsin total coal use has increased by 57.8 percent since 1975.

1970-2012 TRILLIONS OF BTU AND PERCENT OF TOTAL

This table represents a conversion from tons to trillions of Btus. The conversion factor from tons to Btus of coal depends on the type of coal used in the sector. For example, the industrial and commercial sectors use bituminous coal with a high energy content (21.0 to $23.6 \mathrm{MMBtu} /$ ton), where the utility sector uses sub-bituminous coal with a lower energy and sulfur content (19.6 MMBtu/ton). Utilities mainly use low-sulfur coal to conform to regulations addressing sulfur emissions from utilities.

$\begin{aligned} & \text { Year } \\ & 1970 \end{aligned}$	Residential		Commercial		Industrial		Electric Utility ${ }^{\text {a }}$		Total 355.4	Total End Use124.3
	9.5	2.7\%	17.7	5.0\%	97.1	27.3\%	231.1	65.0\%		
1975	3.8	1.4\%	7.1	2.7\%	40.9	15.6\%	210.5	80.3\%	262.3	51.8
1980	2.3	0.7\%	4.4	1.4\%	47.2	14.5\%	270.7	83.4\%	324.6	53.9
1985	0.9	0.2\%	4.4	1.2\%	51.4	13.7\%	317.7	84.9\%	374.4	56.7
1990	0.4	0.1\%	4.5	1.1\%	51.9	12.6\%	354.5	86.2\%	411.4	56.9
1995	0.3	0.1\%	3.8	0.8\%	47.2	10.2\%	412.4	88.9\%	463.7	51.3
1996	0.3	0.1\%	4.6	0.9\%	43.1	8.9\%	438.8	90.1\%	486.9	48.1
1997	0.3	0.1\%	4.6	0.9\%	43.2	8.5\%	462.0	90.6\%	510.1	48.1
1998	0.3	0.1\%	4.8	1.0\%	41.9	8.4\%	448.9	90.5\%	495.8	46.9
1999	0.2	0.0\%	5.0	1.0\%	40.7	8.1\%	459.6	90.9\%	505.5	45.9
2000	0.2	0.0\%	4.8	0.9\%	43.0	8.3\%	471.4	90.8\%	519.4	48.0
2001	0.2	0.0\%	4.8	0.9\%	45.3	8.7\%	471.6	90.4\%	521.9	50.3
2002	0.2	0.0\%	4.5	0.9\%	46.7	9.2\%	457.1	89.9\%	508.5	51.3
2003	0.2	0.0\%	4.7	0.9\%	45.6	8.7\%	476.6	90.4\%	527.0	50.5
2004	0.1	0.0\%	4.8	0.9\%	47.0	8.7\%	485.4	90.4\%	537.2	51.9
2005	0.1	0.0\%	4.8	0.9\%	45.1	8.5\%	481.7	90.6\%	531.7	50.0
2006	0.1	0.0\%	4.8	0.9\%	46.7	9.0\%	464.1	90.0\%	515.7	51.6
2007	0.1	0.0\%	3.9	0.8\%	46.6	9.0\%	465.4	90.2\%	515.9	50.5
2008	0.0	0.0\%	2.7	0.5\%	45.5	8.4\%	492.6	91.1\%	540.8	48.2
2009	0.0	0.0\%	2.0	0.4\%	41.1	8.5\%	441.4	91.1\%	484.5	43.1
2010	0.0	0.0\%	2.2	0.4\%	42.1	8.1\%	478.7	91.5\%	523.0	44.3
2011	0.0	0.0\%	1.8	0.4\%	41.0	8.4\%	448.0	91.3\%	490.8	42.8
$2012{ }^{\text {p }}$	0.0	0.0\%	1.5	0.4\%	34.9	8.4\%	377.5	91.2\%	413.9	36.5

a Includes petroleum coke co-fired with coal.
p Preliminary estimates.
Source: U.S. Department of Energy, Energy Information Administration, State Energy Data Report, [DOE/EIA-0214(94)] (October 1996); Coal Distribution [DOE/EIA-0125 (95/4Q)] (1980-1995); Wisconsin Department of Natural Resources, Annual Survey of Point Source Emissions, unpublished (1971-2012); annual reports of various Wisconsin electric generating utilities (1995-2012); U.S. Department of Commerce, Bureau of the Census of Housing (1970, 1980, 1990 and 2000).

Wisconsin Coal Use, by Economic Sector

2012 TRILLIONS OF BTU AND PERCENT OF TOTAL

1970-2012 TRILLIONS OF BTU

Wisconsin Coal Use, in Tons, by Economic Sector

1970-2012 THOUSANDS OF TONS AND PERCENT OF TOTAL

Year	Residential		Commercial		Industrial		Electric Utility ${ }^{\text {a }}$		Total
1970	453	2.9\%	840	5.4\%	3,870	25.0\%	10,294	66.6\%	15,457
1975	202	1.7\%	375	3.1\%	1,716	14.2\%	9,776	81.0\%	12,069
1980	113	0.7\%	210	1.3\%	2,001	12.5\%	13,715	85.5\%	16,039
1985	40	0.2\%	211	1.1\%	2,176	11.7\%	16,208	87.0\%	18,635
1990	20	0.1\%	216	1.1\%	2,200	10.7\%	18,087	88.1\%	20,523
1995	15	0.1\%	179	0.8\%	1,998	8.6\%	21,042	90.6\%	23,234
1996	14	0.1\%	220	0.9\%	1,827	7.5\%	22,386	91.6\%	24,447
1997	13	0.1\%	220	0.9\%	1,830	7.1\%	23,571	92.0\%	25,634
1998	12	0.0\%	228	0.9\%	1,773	7.1\%	22,904	91.9\%	24,917
1999	11	0.0\%	237	0.9\%	1,724	6.8\%	23,450	92.2\%	25,422
2000	10	0.0\%	230	0.9\%	1,820	7.0\%	24,050	92.1\%	26,110
2001	9	0.0\%	229	0.9\%	1,919	7.3\%	24,062	91.8\%	26,219
2002	8	0.0\%	213	0.8\%	1,978	7.8\%	23,323	91.4\%	25,522
2003	7	0.0\%	226	0.9\%	1,931	7.3\%	24,314	91.9\%	26,478
2004	6	0.0\%	227	0.8\%	1,989	7.4\%	24,765	91.8\%	26,987
2005	5	0.0\%	228	0.9\%	1,911	7.2\%	24,577	92.0\%	26,721
2006	4	0.0\%	230	0.9\%	1,976	7.6\%	23,679	91.5\%	25,889
2007	3	0.0\%	185	0.7\%	1,972	7.6\%	23,745	91.7\%	25,905
2008	0	0.0\%	131	0.5\%	1,927	7.1\%	25,132	92.4\%	27,190
2009	0	0.0\%	94	0.4\%	1,742	7.2\%	22,518	92.5\%	24,354
2010	0	0.0\%	105	0.4\%	1,785	6.8\%	24,423	92.8\%	26,313
2011	0	0.0\%	87	0.4\%	1,736	7.0\%	22,858	92.6\%	24,681
$2012{ }^{\text {p }}$	0	0.0\%	74	0.4\%	1,479	7.1\%	19,257	92.5\%	20,811

a Includes petroleum coke co-fired with coal.
p Preliminary estimates.
Source: U.S. Department of Energy, Energy Information Administration, State Energy Data Report [DOE/EIA-0214(94)] (October 1996); U.S. Department of Commerce, Bureau of Census, Census of Manufacturers and Annual Survey of Manufacturers, Fuels and Electric Energy Consumed (1971-1982); Wisconsin Department of Natural Resources, Annual Survey of Point Source Emissions, unpublished (1971-2012); annual reports of various Wisconsin electric generating utilities (1995-2012); U.S. Department of Commerce, Bureau of the Census of Housing (1970, 1980, 1990 and 2000); http//www.eia.doe.gov/cneaf/electricity/epa/epa_sprdshts.html

Wisconsin Electric Utility Coal Use, by Plant

1975-2012	THOUSANDS OF TONS										
Utility/Plant Name	$\mathbf{1 9 7 5}$	$\mathbf{1 9 8 0}$	$\mathbf{1 9 8 5}$	$\mathbf{1 9 9 0}$	$\mathbf{1 9 9 5}$	$\mathbf{2 0 0 0}$	$\mathbf{2 0 0 5}$	$\mathbf{2 0 0 9}$	$\mathbf{2 0 1 0}$	$\mathbf{2 0 1 1}$	$\mathbf{2 0 1 2 ^ { p }}$
Dairyland Power Cooperative											
Alma	502	1,188	1,268	1,506	1,231	1,754	2,031	1,732	1,441	1,314	1,251
Genoa	801	915	914	680	788	928	1,172	985	940	543	596
Stoneman	111	74	44	30	0	0	38	13	0	0	0
Madison Gas and Electric Co.											
Blount Street	77	144	61	95	137	215	228	15	12	0	0

Northern States Power Co.

Bay Front	52	100	36	45	30	115	152	100	60	51	3
Wisconsin Electric Power Co.											
Oak Creek	2,873	2,542	2,528	1,522	2,093	3,410	3,255	2,687	3,670	4,642	3,051
Pleasant Prairie	0	581	2,564	4,703	5,073	5,295	5,373	4,762	4,730	4,096	3,574
Port Washington	691	683	348	126	430	641	0	0	0	0	0
Valley	536	774	528	463	458	690	780	612	566	484	412

Wisconsin Power and Light Co.

Blackhawk	24	30	8	0	0	0	0	0	0	0	0
Columbia	1,025	3,603	2,991	3,665	4,238	4,355	4,274	4,053	4,589	4,396	4,528
Edgewater	976	1,056	2,112	2,180	2,702	2,531	2,533	2,473	2,624	2,674	2,191
Nelson Dewey	512	552	541	497	615	580	729	569	632	575	488
Rock River	293	245	317	198	253	2	0	0	0	0	0
Wisconsin Public Services Corp.											
Pulliam	753	744	489	674	1,130	1,444	1,627	958	1,161	584	378
Weston	239	329	1,275	1,555	1,702	1,972	2,143	3,363	3,864	3,404	2,746

Municipal Utilities

Manitowoc											
²											
Marshfield	142	67	91	116	160	108	140	144	134	95	40
Menasha	90	40	48	7	0	0	0	0	0	0	0
Richland Center	58	28	25	25	2	10	6	52	0	0	0
Total $^{\mathbf{b}}$	21	20	20	0	0	0	0	0	0	0	0
$\mathbf{9 , 7 7 6}$	$\mathbf{1 3 , 7 1 5}$	$\mathbf{1 6 , 2 0 8}$	$\mathbf{1 8 , 0 8 7}$	$\mathbf{2 1 , 0 4 2}$	$\mathbf{2 4 , 0 5 0}$	$\mathbf{2 4 , 5 7 7}$	$\mathbf{2 2 , 5 1 8}$	$\mathbf{2 4 , 4 2 3}$	$\mathbf{2 2 , 8 5 8}$	$\mathbf{1 9 , 2 5 7}$	

[^20]
COAL USE BY ELECTRIC UTILITIES
 15.8\%

Coal use by Wisconsin's electric utilities decreased 15.8 percent in 2012. Increased use of natural gas for generating accounted for much of the decrease.

The three largest power plans, Pleasant Prairie, Columbia and Oak Creek, used 57.9 percent of the utility coal burned in Wisconsin, while Wisconsin's newest coal plant Weston 4
(Wisconsin Public
Service) uses 9.0 percent of Wisconsin's utility coal.

A map of Wisconsin's coal transportation routes and major coal
plants can be found in
the Map Appendix at the back of the book.

Wisconsin Manufacturing Industry Coal Use, by Industry Group

PAPER \& ALLIED PRODUCTS 91.8\%

Wisconsin's industrial coal use continues to be dominated by paper and allied products, which consumed 91.8 percent of the industrial coal used in 2012.

Entries in the table without figures indicate coal tons of less than 500 tons.

1971-2012 THOUSANDS OF TONS

SIC Industry Group	1971	1975	1980	1985	1990	1995	2000	2005	2007	2008	2009	2010	2011	2012 ${ }^{\text {p }}$
20 Food and Kindred	213	56	64	72	43	10	15	21	22	14	12	9	10	9
26 Paper and Allied	1,940	1,469	1,737	1,878	1,863	1,825	1,700	1,765	1,838	1,835	1,648	1,661	1,584	1,357
32 Stone, Clay and Glass	79	13	8	49	116	120	80	121	108	51	61	64	70	57
33 Primary Metals	114	50	80	66	95	-	-	-	-	27	21	51	72	56
37 Transport Equipment	107	35	30	37	32	22	12	4	4	-	-	-	-	
Total Manufacturing	2,810	1,716	2,001	2,176	2,200	1,998	1,820	1,911	1,972	1,927	1,742	1,785	1,736	1,479
p Preliminary.														
Source: U.S. Department of Commerce, Bureau of the Census, Census of Manufacturers, and Annual Survey of Manufacturers (1972-1981); U.S. Department of Energy, Energy Information Administration, Coal Distribution [DOE/EIA-0125 (95/4Q)] (1980-1995); Wisconsin Department of Natural Resources, Annual Survey of Point Source Emissions, unpublished (1972-2012).														

Coal Deliveries to Wisconsin Industries, by Region of Origin

COAL FROM WESTERN U.S. 38.4\%

Coal currently used by Wisconsin industry comes primarily from the western part of the country (38.4 percent).

There has been a gradual decline in industrial coal use. Industrial coal from Illinois has declined 63.3 percent since 1985.

1975-2012 THOUSANDS OF TONS

Origin													
a	$\mathbf{1 9 7 5}$	$\mathbf{1 9 8 0}$	$\mathbf{1 9 8 5}$	$\mathbf{1 9 9 0}$	$\mathbf{1 9 9 5}$	$\mathbf{2 0 0 0}$	$\mathbf{2 0 0 5}$	$\mathbf{2 0 0 7}$	$\mathbf{2 0 0 8}$	$\mathbf{2 0 0 9}$	$\mathbf{2 0 1 0}$	$\mathbf{2 0 1 1}$	$\mathbf{2 0 1 2}^{\text {p }}$
Eastern PA	39	136	24	4	5	8	137	148	141	48	18	45	109
Western PA	11	125	192	38	33	11	0	0	0	0	0	0	0
Northern WV	93	339	150	230	384	75	175	98	78	99	93	93	144
Ohio	91	129	43	0	10	0	36	19	0	0	0	0	0
Southern No. 1 (WV and VA)	35	88	2	1	15	190	13	0	0	0	2	0	8
Southern No. 2 (WV and KY)	1,210	497	757	628	529	326	243	261	259	125	173	150	74
Western KY	111	127	147	98	196	179	192	197	195	97	91	99	72
Ilinois	515	520	624	300	228	147	101	106	135	307	310	295	229
Indiana	55	114	89	43	67	52	207	215	217	214	194	194	204
Western U.S.	11	3	0	0	0	0	0	0	0	0	0	0	0
CO and NM	0	0	0	0	0	0	190	322	203	104	207	218	147
Wyoming	24	16	0	346	250	521	368	423	446	421	405	372	334
Utah	1	0	0	0	0	0	71	0	7	12	18	19	27
M0 and WA	281	220	158	0	15	0	0	0	0	0	5	7	15
Total	$\mathbf{2 , 4 7 7}$	$\mathbf{2 , 3 1 4}$	$\mathbf{2 , 1 8 6}$	$\mathbf{1 , 6 8 8}$	$\mathbf{1 , 7 3 3}$	$\mathbf{1 , 5 0 9}$	$\mathbf{1 , 7 3 3}$	$\mathbf{1 , 7 8 9}$	$\mathbf{1 , 6 8 1}$	$\mathbf{1 , 4 2 7}$	$\mathbf{1 , 5 1 6}$	$\mathbf{1 , 4 9 3}$	$\mathbf{1 , 3 6 2}$

[^21]
Coal Deliveries to Wisconsin, by Transportation Mode and Type of Receiving Facility

1975-2012 THOUSANDS OF TONS

Transportation Mode and Type of Receiving Facility	1975	1980	1985	1990	1995	2000	2005	2007	2008	2009	2010	2011	$2012{ }^{\text {p }}$
Rail													
Electric Utilities	7,631	11,140	13,194	17,237	18,815	25,072	21,722	24,063	24,996	22,761	23,027	22,782	19,624
Coke Plants	29	11	0	0	0	0	0	0	0	0	0	0	0
Other Industrial	850	1,047	846	811	772	1,169	1,177	1,377	1,469	1,299	1,321	1,164	1,036
Residentia//commercial	170	3	5	1	3	33	417	56	96	75	59	39	0
Subtotal	8,680	12,201	14,045	18,049	19,590	26,274	23,316	25,496	26,561	24,135	24,407	23,985	20,660
Great Lakes Shipping													
Electric Utilities	2,211	1,713	1,118	429	1,005	753	1,572	518	69	0	0	0	0
Coke Plants	224	167	0	0	0	0	0	0	0	0	0	0	0
Other Industrial	992	981	1,024	822	788	331	46	39	0	0	0	155	177
Residentia/Commercial	212	46	11	1	0	0	0	0	40	14	30	44	23
Subtotal	3,639	2,907	2,153	1,252	1,793	1,084	1,618	557	109	14	30	199	200
River Barge													
Electric Utilities	1,756	1,487	1,042	855	1,083	32	1,508	454	12	103	176	0	8
Other Industrial	0	62	246	55	120	4	22	18	11	9	12	11	12
Residentia//Commercial	0	1	10	2	126	129	0	0	32	24	19	10	6
Subtotal	1,756	1,550	1,298	912	1,329	165	1,530	472	55	136	207	21	26
Truck													
Electric Utilities	0	0	2	31	0	0	0	50	0	60	59	59	35
Other Industrial	0	1	45	1	53	5	488	355	200	119	184	162	137
Residentia//Commercial	0	0	0	0	0	0	1	0	1	0	0	0	0
Subtotal	0	1	47	32	53	5	489	405	201	179	243	221	172
Totap	14,075	16,659	17,543	20,245	22,765	27,528	26,953	26,930	26,926	24,464	24,887	24,427	21,059

[^22]
COAL SHIPPED BY RAIL
 13.9\%

Coal shipped by rail decreased 13.9 percent in 2012. Total coal deliveries decreased by 13.8 percent. Ninetyeight percent of coal is delivered to Wisconsin by rail. The long term increase in coal tonnage shipped by rail reflects the increased use of low sulfur western coal. Use of low sulfur eastern coal shipped by the Great Lakes, and Midwest coal shipped by river barge, is expected to continue at near current levels. Changes in Wisconsin coal deliveries will be concentrated in rail deliveries of western coal for electric utilities.

Coal Deliveries to Wisconsin Power Plants, by Region of Origin

1975-2012 THOUSANDS OF TONS

Coal Deliveries to Wisconsin Power Plants, by State of Origin

COAL DELIVERIES
 13.9\%

Coal deliveries to

Wisconsin power
plants decreased 13.9 percent. This resulted in a decrease of coal stockpiled at Wisconsin utilities for future use.

1975-2012 THOUSANDS OF TONS

State	1975	1980	1985	1990	1995	2000	2005	2007	2008	2009	2010	2011	$2012{ }^{p}$
Eastern													
Kentucky	2,073	2,816	2,122	196	95	47	758	179	0	10	10	10	0
Pennsylvania	572	1,007	639	1,760	941	826	0	12	0	76	650	1,764	788
WestVirginia	5	233	0	136	57	34	252	240	12	0	18	67	0
Other States	1	0	9	59	0	62	191	0	37	0	0	0	0
Subtotal	2,651	4,056	2,770	2,151	1,093	969	1,201	431	49	86	678	1,842	788
Midwestern													
Illinois	4,857	3,364	1,478	1,136	1,232	0	97	686	236	86	183	59	57
Indiana	785	205	1,731	1,893	46	221	159	146	56	96	3	0	1
Ohio	27	272	0	0	0	0	0	0	0	0	0	0	43
Other States	0	1	9	0	0	0	0	0	0	0	0	0	0
Subtotal	5,669	3,842	3,218	3,029	1,278	221	256	832	292	182	186	59	102
Western													
Montana	2,161	2,575	2,235	1,983	2,102	463	591	1,961	562	548	535	482	871
Wyoming	1,053	4,042	7,101	10,605	15,223	19,192	20,581	19,811	22,569	21,438	21,383	19,841	17,739
Other States ${ }^{\text {d }}$	20	0	0	43	1,758	1,320	2,174	2,050	1,605	670	482	617	166
Subtotal	3,234	6,617	9,336	12,631	19,083	20,975	23,346	23,822	24,736	22,656	22,400	20,940	18,777
Total	11,554	14,515	15,324	17,811	21,454	22,165	24,803	25,085	25,077	22,924	23,263	22,841	19,667

[^23]p Preliminary
Source: U.S. Department of Energy, Cost and Quality of Fuels for Electric Utility Plants 2000 [DOE/EIA-0191(2001)] (May 2001), and Quarterly Coal Report [DOE/EIA-0121 (2012/4Q)] (March 2013), www.eia.gov/coal/distribution/quarterly and www.eia.gov/coal/distribution/annual

Wisconsin Electric Utility Sales, by Economic Sector

1970-2012 MILLIONS OF kWh AND PERCENT OF TOTAL

Year	Residential		Commercial ${ }^{\text {a }}$		Industrial		Agricultural ${ }^{\text {c,d }}$		Total ${ }^{\text {e }}$
1970	8,761	35.4\%	5,738	23.2\%	9,188	37.2\%	1,028	4.2\%	24,715
1975	10,893	34.8\%	8,452	27.0\%	10,721	34.3\%	1,210	3.9\%	31,276
1980	12,513	33.2\%	11,243	29.8\%	12,450	33.0\%	1,539	4.1\%	37,745
1985	13,257	31.8\%	12,783	30.6\%	13,940	33.4\%	1,745	4.2\%	41,725
$1990^{\text {b }}$	14,740	30.0\%	15,808	32.1\%	17,005	34.6\%	1,645	3.3\%	49,198
1995	17,040	29.4\%	18,042	31.1\%	21,290	36.7\%	1,595	2.8\%	57,967
1996	17,100	29.1\%	18,588	31.6\%	21,471	36.6\%	1,585	2.7\%	58,744
1997	16,935	28.2\%	18,881	31.4\%	22,703	37.8\%	1,575	2.6\%	60,094
1998	17,522	28.2\%	19,334	31.2\%	23,640	38.1\%	1,565	2.5\%	62,061
1999	17,942	28.2\%	20,781	32.7\%	23,264	36.6\%	1,560	2.5\%	63,547
2000	18,199	28.1\%	21,407	33.1\%	23,528	36.4\%	1,555	2.4\%	64,689
2001	18,990	28.8\%	21,614	32.8\%	23,823	36.1\%	1,550	2.3\%	65,977
$2002{ }^{\text {f }}$	20,030	29.9\%	22,290	33.3\%	23,134	34.5\%	1,545	2.3\%	66,999
2003	21,364	31.8\%	20,056	29.8\%	24,226	36.0\%	1,595	2.4\%	67,241
2004	21,120	31.2\%	19,951	29.4\%	25,228	37.2\%	1,501	2.2\%	67,800
2005	21,385	30.4\%	21,968	31.2\%	25,376	36.1\%	1,606	2.3\%	70,335
2006	20,729	29.7\%	22,232	31.8\%	25,286	36.2\%	1,574	2.3\%	69,821
2007	21,454	30.1\%	23,032	32.3\%	25,436	35.7\%	1,379	1.9\%	71,301
2008	20,985	29.9\%	22,978	32.8\%	24,672	35.2\%	1,486	2.1\%	70,121
2009	20,458	30.9\%	21,995	33.2\%	22,390	33.8\%	1,443	2.2\%	66,286
2010	21,323	31.0\%	22,514	32.7\%	23,452	34.1\%	1,463	2.1\%	68,752
$2011{ }^{\text {r }}$	21,249	31.0\%	22,605	32.9\%	23,407	34.1\%	1,351	2.0\%	68,612
$2012{ }^{\text {p }}$	21,012	30.5\%	22,727	33.0\%	23,561	34.2\%	1,520	2.2\%	68,820

a Includes sales to public authorities (including sales for street and highway lighting) and utility company interdepartmental sales (for example, from electric to gas department of a combined utility).
b Beginning in 1989, U.S. DOE data sources have been used
c Beginning in 2003, USDA agricultural statistics were used for electricity sales in this sector. To accommodate this shift in data sources, numbers in the residential and agricultural sectors have been historically revised
d The agricultural sector does not include processing plants for crops and other agricultural products; these are classified under the commercial sector.
e Total sales may vary from other pages due to independent rounding.
f In 2002, EIA shifted their commercial and industrial criteria. Previous editions of this publication corrected for this shift, but revisions based on availability of firm agricultural electric consumption data prompted a historical revision starting in 1989. This publication no longer corrects for shifts in EIA data collection methods which are reflected in 2003.
p Preliminary estimates.
r Revised.
Source: Sectoral disaggregation by Wisconsin State Energy Office, based on Public Service Commission of Wisconsin, Statistics of Wisconsin Public Utilities, Bulletin \#8 (1970-1994); U.S. Department of Agriculture, Rural Electrification Administration, Annual Statistical Report, REA Bulletin 1-1 (1970-1994); U.S. Department of Energy, Electric Sales and Revenue 1989-1999 [DOE/EIA-0540 (99)] (October 2000), Electric Power Monthly, Table 5.4B [DOE/EIA-0226 (2013/05)] (May 2013) (1989-2012). www.eia.gov/electricity/monthly/index.cfml; U.S. Department of Agriculture, Economic Research Service, electricity expenditure data at http://www.ers.usda.gov/ (2009-2012).

TOTAL ELECTRICITY SALES 0.3\%

Total electricity sales increased 0.3 percent in 2012 but have grown 2.7 percent over the past ten years. In 2012, electricity sales decreased in the Residential sector, but increased in all other sectors.

A map of Wisconsin's

 major electric service territories, generatingfacilities and transmission lines can be found in the Map Appendix.

Wisconsin Electric Utility Sales, by Economic Sector

2012 MILLIONS OF kWh AND PERCENT OF TOTAL

1970-2012 MILLIONS OF kWh

Wisconsin Electricity Sales to Ultimate Customers, by Private and Municipal Utilities and Power Cooperatives

Year	Private Utilities		Municipal Utilities		Power Cooperatives		Total
1970	21,515	87.1\%	2,160	8.7\%	1,040	4.2\%	24,715
1975	27,021	86.4\%	2,784	8.9\%	1,471	4.7\%	31,276
1980	32,335	85.7\%	3,547	9.4\%	1,864	4.9\%	37,746
1985	35,497	85.1\%	4,132	9.9\%	2,096	5.0\%	41,725
$1990{ }^{3}$	41,653	84.7\%	5,263	10.7\%	2,882	4.6\%	49,198
1995	48,814	84.2\%	6,479	11.2\%	2,674	4.6\%	57,967
1996	49,332	84.0\%	6,635	11.3\%	2,777	4.7\%	58,744
1997	50,640	84.3\%	6,627	11.0\%	2,827	4.7\%	60,094
1998	52,242	84.2\%	6,992	11.3\%	2,827	4.6\%	62,061
1999	53,517	84.2\%	7,215	11.4\%	2,815	4.4\%	63,547
2000	54,404	84.7\%	7,375	11.4\%	2,910	4.5\%	64,689
2001	55,545	84.2\%	7,349	11.1\%	3,083	4.7\%	65,977
2002	56,250	84.0\%	7,523	11.2\%	3,226	4.8\%	66,999
2003	56,459	84.0\%	7,500	11.2\%	3,282	4.9\%	67,241
2004	57,099	84.0\%	7,598	11.2\%	3,279	4.8\%	67,976
2005	58,899	83.7\%	7,950	11.3\%	3,487	5.0\%	70,336
2006	58,407	83.7\%	7,902	11.3\%	3,512	5.0\%	69,821
2007	59,585	83.6\%	8,079	11.3\%	3,637	5.1\%	71,301
2008	58,429	83.3\%	7,947	11.3\%	3,746	5.3\%	70,122
2009	55,051	83.1\%	7,485	11.3\%	3,750	5.7\%	66,286
2010	57,183	83.2\%	7,759	11.3\%	3,810	5.5\%	68,752
2011	56,914	83.0\%	7,800	11.4\%	3,898	5.7\%	68,612
2012 ${ }^{\text {p }}$	57,128	83.0\%	7,856	11.4\%	3,836	5.6\%	68,820

[^24]Investor owned utilities
supply the vast majority of power to Wisconsin electricity customers (83.0 percent). The relative amounts of power supplied by the three types of utilities have changed very little over the past 20 years. rewer supplied by the

Eastern Wisconsin Electric Utility Power Load and Non-Coincident Peak Demand

Eastern Wisconsin Electric Utility Non-Coincident Peak Demand

```
1970-2012 MEGAWATTS
```


Eastern Wisconsin Electric Utility Power Load and Non-Coincident Peak Demand, by Month

The highest non-coincident peak demand in 2012 was
seen in July at
12,259 MW.

[^25]
Wisconsin Electric Generating Capacity, by Type of Plant

Wisconsin Electric Generating Capacity, by Type of Plant and Type of Producer

1990-2012 MEGAWATTS

These data represent the generation capacity of utilities, who are required to have power available to customers via the power grid; and merchant producers who produce power for wholesale (Independent Power Producers) to utilities; and non-utilities which are primarily industrial sector businesses producing electricity for in-house use, any excess of which may also be sold to utilities for retail re-sale on the power grid.

Year	Utility Generating Capacityc				Non-Utility Generating Capacity			All Producers Capacity Total
	Cooperatives	Investor-Owned Utilities	Municipal	Utility Total	IPPa	Non-Utility ${ }^{\text {b }}$	Non-Utility Total	
1990	937	9,404	204	10,544	62	889	951	11,494
1991	937	9,352	203	10,492	62	916	977	11,469
1992	937	9,352	203	10,492	62	921	983	11,475
1993	937	9,627	289	10,852	62	922	983	11,836
1994	937	9,904	289	11,129	62	922	983	12,113
1995	937	10,452	290	11,678	62	960	1,022	12,700
1996	937	10,379	375	11,691	62	936	998	12,689
1997	937	10,432	376	11,744	350	939	1,289	13,033
1998	937	10,433	382	11,751	530	939	1,469	13,220
1999	937	10,455	410	11,801	830	946	1,775	13,577
2000	937	10,794	421	12,151	830	984	1,814	13,965
2001	1,033	10,798	432	12,263	1,361	1,000	2,361	14,624
2002	1,033	10,804	440	12,277	1,362	1,008	2,370	14,647
2003	1,033	11,057	440	12,530	1,362	1,008	2,371	14,901
2004	1,036	11,058	492	12,586	1,961	1,013	2,974	15,560
2005	1,037	11,098	501	12,636	3,397	1,015	4,412	17,048
2006	1,037	11,098	566	12,702	3,397	1,034	4,431	17,133
2007	1,037	10,024	566	11,628	4,471	1,038	5,509	17,137
2008	1,017	11,201	566	12,784	5,036	1,016	6,052	18,836
2009	1,017	11,960	566	13,543	5,071	1,092	6,163	19,706
2010	1,030	12,772	565	14,367	5,357	745	6,102	20,469
2011	972	12,520	593	14,085	5,306	716	6,022	20,107
$2012{ }^{\text {e }}$	973	15,025	585	16,583	2,981	694	3,675	20,259

2012 saw a slight increase of 0.8 percent in capacity over 2011.

The Investor Owned Utilities (IOUs) saw an increase in capacity of 20 percent, and the Cooperatives, an increase of 0.1 percent. The Municipal utilities decreased their capacity by 1.5 percent; nonutilities by 3.1 percent, and IPPs by 43.8 percent

These data were not available until 1990; the capacity listed for 1990 represents in-place capacity for all previous years of operation.

All capacity figures are estimates, based on a point-in-time determination.

[^26]
Wisconsin Utility Electric Power Generation, by Type of Fuel

1970-2012 MILLIONS OF kWh

Year	Electricity Generation by Utilities							IPP	Non-Utilitye	Total IPP and Non-Utility	$\begin{aligned} & \text { Imports } \\ & \& \\ & \text { Lossesc } \end{aligned}$	Total Sales ${ }^{h}$
	Coal ${ }^{\text {b }}$	Nuclear ${ }^{\text {g }}$	Hydro ${ }^{\text {a }}$	Petroleum ${ }^{\text {d }}$	Natural Gas	Renewablesf	Total Utilities					
1970	25,253	155	1,413				27,211			0	$-2,496$	24,715
1975	20,615	10,292	1,483				33,081			0	-1,805	31,276
1980	26,383	9,912	1,628				38,316			0	-571	37,745
1985	28,840	10,978	2,046		0		41,884			0	-159	41,725
1990	27,956	11,224	1,791	76	393		41,440			0	7,758	49,198
1995	32,994	10,970	2,097	97	924		47,082			0	10,885	57,967
2000	41,736	11,459	1,749	52	965	43	56,004			0	8,685	64,689
$2005{ }^{\text {r }}$	45,219	7,574	1,499	75	2,185	105	56,657	2,306	275	2,581	11,098	70,336
$2006{ }^{\text {r }}$	42,936	12,234	1,446	215	1,928	234	58,993	3,311	2,506	5,816	5,012	69,821
20079	39,460	0	1,314	123	3,132	277	44,306	16,263	2,913	19,176	7,818	71,301
2008	41,270	0	1,428	70	2,451	508	45,726	15,126	2,874	18,000	6,396	70,122
2009	36,554	0	1,353	38	2,597	997	41,539	16,027	2,687	18,713	6,033	66,286
2010	39,427	0	2,027	39	3,164	817	45,473	16,193	2,783	18,976	4,303	68,752
$2011{ }^{\text {r }}$	38,591	0	1,928	37	2,790	906	44,251	15,761	2,794	18,555	5,889	68,695
$2012{ }^{\text {p }}$	32,042	0	1,348	9	8,667	1,266	43,332	13,300	2,769	16,069	9,419	68,820

a From 1970 to 1989, hydroelectric data were sourced from the Public Service Commission of Wisconsin bulletins; from 1990 to 2006, and current year data, are from the federal Department of Energy, Energy Information Administration (EIA). Starting in 2007, data are from the Public Service Commission of Wisconsin.
b Coal data may include a small amount of refuse derived fuel (RDF).
c Imports and losses is a reflection of the difference between total sales recorded by EIA and total Wisconsin-based generation. A negative sign indicates Wisconsin utilities exported electric power to other states.
d Petroleum (oil) was split from natural gas as a generation resource starting in 1990. Prior to 1990, they were combined in this table. Propane used to produce electricity is included in this category.
e Non-utility generation sources were available prior to 2005, but not collected separately until then.
f The renewables category includes biomass, methane from landfills and digesters, solar and wind resources.
g Wisconsin utilities no longer own nuclear generation; all nuclear reactors located in Wisconsin are owned by Independent Power Producers.
h Sales figures for all years are from the EIA Electric Power Monthly.
p Preliminary.
r Revised.
Source: Public Service Commission of Wisconsin, Accounts and Finance Division, Generating Plants Operated by Wisconsin Electric Utilities, Bulletin \#46 (1971-1994) and personal communications 2002; U.S. Department of Agriculture, Rural Electrification Administration, Annual Statistical Report, REA Bulletin 1-1 (1971-1994); U.S. Department of Energy, Energy Information Administration, Electric Power Monthly [DOE/EIA-0226 (2012/05)] (May 2012) (1990-2006); Public Service Commission of Wisconsin, unpublished electrical generation data (2007-2012).

Wisconsin Independent Power Producer and Non-Utility Electric Power Generation, by Type of Fuel

2005-2012 MILLIONS OF kWh

Year	Coal	Nuclear ${ }^{\text {d }}$	Hydro	Petroleum	Natural Gas	Renewables ${ }^{\text {c }}$	Purchased Steam	Total IPP and Non-Utilities	Utilities	$\begin{gathered} \text { Imports } \\ \& \\ \text { Losses }^{\mathrm{a}} \end{gathered}$	Total Sales ${ }^{\text {e }}$
2005 br	0	0	52	0	2,221	308	0	2,581	56,657	11,098	70,336
2006	1,362	0	272	48	3,184	950	0	5,816	58,993	5,012	69,821
2007 ${ }^{\text {d, }}$	1,650	12,910	220	38	3,348	1,010	0	19,176	44,306	7,819	71,301
2008	1,617	12,155	256	29	2,768	1,174	0	18,000	45,726	6,396	70,122
2009	1,270	12,683	209	5	2,855	1,660	30	18,713	41,539	6,034	66,286
2010	1,219	13,281	312	6	2,310	1,814	33	18,976	45,473	4,303	68,752
2011	1,173	11,560	331	8	3,421	2,043	19	18,555	44,251	5,889	68,695
2012 ${ }^{\text {p }}$	1,300	9,784	260	1	2,623	2,070	32	16,070	43,332	9,418	68,820

[^27]IPP AND
NON-UTILITY
ELECTRIC GENERATION
13.4\%

Total Independent Power Producer (IPP) and non-utility electric generation dropped by 13.4 percent in 2012: IPPs saw a 15.6 percent drop, and non-utilities saw 0.9 percent dip. Energy production from renewable sources increased by 1.3 percent in 2012, while production from coal increased by 10.8 percent. Out-ofstate generation is not included in these figures.

IPPs are independent power producers allowed under law to sell their power to wholesalers such as utility cooperatives.

They are barred from selling their power on the retail market. Non-Utility refers to industrial power producers such as paper mills.

Wisconsin Electric Power Generation, All Producers, by Type of Fuel

1970-2012 MILLIONS OF kWh

Year	Coal ${ }^{\text {b }}$	Nuclear	Hydro ${ }^{\text {a }}$	Petroleum ${ }^{\text {d }}$	Natural Gas	Renewables ${ }^{\text {e }}$	Purchased Steam	Total Generation	Imports \& Losses ${ }^{\text {c }}$	Total Sales ${ }^{f}$
1970	25,253	155	1,413					27,211	-2,496	24,715
1975	20,615	10,292	1,483					33,081	-1,805	31,276
1980	26,383	9,912	1,628					38,316	-571	37,745
1985	28,840	10,978	2,046					41,884	-159	41,725
1990	27,956	11,224	1,791	76	393			41,440	7,758	49,198
1995	32,994	10,970	2,097	97	924			47,082	10,885	57,967
2000	41,736	11,459	1,749	52	965	43		56,004	8,685	64,689
$2005{ }^{\text {r }}$	45,219	7,574	1,551	75	4,406	413		59,238	11,098	70,336
$2006{ }^{\text {r }}$	44,298	12,234	1,718	263	5,112	1,184		64,809	5,012	69,821
$2007{ }^{1}$	41,111	12,910	1,534	161	6,479	1,287		63,482	7,819	71,301
2008	42,887	12,155	1,685	100	5,219	1,681		63,727	6,396	70,122
2009	37,824	12,683	1,562	44	5,452	2,658	30	60,253	6,033	66,286
2010	40,646	13,281	2,339	45	5,474	2,631	33	64,449	4,303	68,752
2011^{1}	39,763	11,560	2,259	45	6,211	2,949	19	62,806	5,889	68,695
$2012^{\text {p }}$	33,342	9,784	1,608	9	11,290	3,337	32	59,401	9,419	68,820

a From 1970 to 1989, hydroelectric data were sourced from the Public Service Commission of Wisconsin bulletins; from 1990 to 2006, and current year data, are from the federal Department of Energy, Energy Information Administration (EIA). Starting in 2007, data are from the Public Service Commission of Wisconsin.
b Coal data may include a small amount of refuse derived fuel (RDF).
c Imports and losses is a reflection of the difference between total sales recorded by EIA and total Wisconsin-based generation. A negative sign indicates Wisconsin utilities exported electric power to other states.
d Petroleum (oil) was split from natural gas as a generation resource starting in 1990. Prior to 1990, they were combined in this table. Propane used to produce electricity is included in this category.
e The renewables category includes biomass, methane from landfills and digesters, solar and wind resources.
f Sales figures for all years are from the EIA Electric Power Monthly.
p Preliminary.
r Revised.
Source: Public Service Commission of Wisconsin, Accounts and Finance Division, Generating Plants Operated by Wisconsin Electric Utilities, Bulletin \#46 (1971-1994) and personal communications 2002; U.S. Department of Agriculture, Rural Electrification Administration, Annual Statistical Report, REA Bulletin 1-1 (1971-1994); U.S. Department of Energy, Energy Information Administration, Electric Power Monthly [DOE/EIA-0226 (2012/05)] (May 2012) (1990-2006); Public Service Commission of Wisconsin, unpublished electrical generation data (2007-2012).

Wisconsin Electric Utility Fuel Costs of Power Generation, by Type of Plant

The costs in the table below reflect costs incurred by Wisconsin's five largest investor owned utilities.

1970-2012 CENTS PER kWh

Year	Fossil Fuel Steam (Coal)	Nuclear Steam ${ }^{\text {b }}$	Internal Combustion ${ }^{\text {a }}$	Total
1970	0.43	0.16	0.75	0.44
1975	1.01	0.36	1.47	0.75
1980	1.72	0.50	3.58	1.40
1985	2.02	0.61	6.76	1.60
1990	1.61	0.52	4.51	1.27
1995	1.33	0.48	3.62	1.12
1996	1.26	0.49	3.15	1.07
1997	1.28	0.50	4.30	1.22
1998	1.25	0.52	3.76	1.13
1999	1.21	0.53	3.70	1.07
2000	1.24	0.52	6.41	1.14
2001	1.27	0.54	6.36	1.15
2002	1.31	0.50	4.61	1.12
2003	1.37	0.48	6.49	1.21
2004	1.44	0.47	6.19	1.24
2005	1.58	0.39	10.29	1.65
2006	1.78	0.35	8.28	1.61
2007	2.00	0.27	7.49	1.84
$2008{ }^{\text {e }}$	2.21	Not Available	7.14	1.89
$2009{ }^{\text {e }}$	2.33	Not Available	4.52	1.81
$2010^{\text {e }}$	2.41	Not Available	3.70	1.85
2011e	2.76	Not Available	2.76	2.03
2012 ${ }^{\text {e }}$	2.74	Not Available	2.06	1.88

a Internal combustion includes both gas-powered turbines and diesel-powered engines.
b Nuclear cost.
e Estimate by Wisconsin State Energy Office based on amount of generation by the five major Wisconsin utilities.
Source: Public Service Commission of Wisconsin, Accounts and Finance Division, Generating Plants Operated by Wisconsin Electric Utilities, Bulletin \#46 (1971-1994); annual reports of the five major Wisconsin electric generating utilities (1990-2012). www.psc.wi.gov/apps40/annlreport/default.aspx

In this table, only the cost of fuel per kilowatt-
hour of generation is reported. The table on the next page includes the annual variable cost of generation.
Renewables such as hydroelectric plants, wind turbines and solar photovoltaic installations are not included here because they have no associated fuel costs.

Wisconsin utilities no longer own nuclear generation; all nuclear reactors located in Wisconsin are owned by Independent Power Producers. The data for 2005, 2006, and 2007 show a decline in fuel costs for nuclear generation because these are the years in which the sales of the plants were completed.

Fuel cost data for nuclear
plants are no longer
available because these
plants are owned by
Independent Power
Producers who do not
submit annual reports
to the Public Service
Commission.

Utility Annual Variable Costs of Power Generation, by Type of Plant and Cost of Purchased Power

This table shows the annual variable cost of generating one kWh of electricity by various technologies in Wisconsin's electric utility plants. The average cost is 109.7 percent higher than the previous peak in 1983 of 2.21 cents per KWh. The cost of purchased power increased by 10.0 percent from 2011 to 2012, and is 15.2 percent more expensive than electricity generated in Wisconsin.

The costs in the table below reflect costs incurred by Wisconsin's five largest investor-owned utilities.

1970-2012 CENTS PER kWh

Year	Fossil Fuel Steam (Coal)	Nuclear Steam ${ }^{\text {b }}$	Internal Combustion ${ }^{\text {a }}$	Hydro	All Plants	Purchased Power	Average Cost
1970	0.55	0.29	1.76	0.27	0.53	NA	NA
1975	1.25	0.51	2.73	0.32	0.97	NA	NA
1980	2.13	0.86	5.74	0.52	1.72	NA	NA
1983	2.58	1.61	29.27	0.56	2.21	NA	2.21
1985	2.55	1.32	19.12	0.61	2.09	NA	NA
$1990{ }^{\circ}$	2.13	1.50	10.87	1.00	1.94	2.22	1.99
$1995{ }^{\circ}$	1.80	1.63	4.71	0.71	1.75	2.17	1.83
$1996{ }^{\text {e }}$	1.68	1.73	4.69	0.64	1.67	2.15	1.77
$1997{ }^{\text {e }}$	1.68	4.37	5.09	0.69	1.94	2.27	2.04
$1998{ }^{\text {e }}$	1.68	2.83	4.70	1.02	1.94	2.67	2.11
1999e	1.68	2.03	4.83	0.87	1.79	2.96	2.05
$2000{ }^{\text {e }}$	1.75	2.16	7.73	0.86	1.91	3.36	2.24
$2001{ }^{\text {e }}$	1.76	2.37	7.63	0.90	1.95	3.90	2.41
$2002{ }^{\text {e }}$	1.87	2.18	6.09	0.75	1.97	3.64	2.40
$2003{ }^{\text {e }}$	1.91	2.40	8.02	1.12	2.10	4.05	2.61
$2004{ }^{\text {e }}$	1.97	2.46	14.63	1.06	2.19	4.26	2.72
$2005{ }^{\text {e }}$	2.11	2.64	16.02	1.21	2.74	5.25	3.48
$2006{ }^{\text {e }}$	2.68	2.83	14.81	1.40	3.11	5.83	3.88
$2007{ }^{\text {e }}$	2.94	3.05	11.76	1.65	3.42	6.29	4.22
$2008{ }^{\text {e }}$	3.49	4.03	13.29	1.53	4.00	6.76	4.74
$2009{ }^{\text {e }}$	3.77	4.25	9.84	1.81	4.22	5.78	4.65
$2010{ }^{\text {e }}$	3.86	4.15	8.19	1.28	4.16	6.06	4.59
$2011^{\text {e }}$	4.25	4.01	7.49	1.37	4.33	5.69	4.65
$2012{ }^{\text {e }}$	4.57	4.29	4.60	1.90	4.44	5.12	4.64

[^28]
Electric Utility Sulfur Dioxide Emissions

1980-2012 TONS

Year	1980	1990	2000	2005	2007	2008	2009	2010	$2011{ }^{\text {r }}$	2012 ${ }^{\text {P }}$
Dairyland Power Cooperative										
Alma	23,641	6,510	3,445	8,816	10,748	9,558	4,809	4,189	1,196	878
Genoa	43,516	28,130	8,165	13,074	12,480	11,970	6,479	8,874	3,296	2,379
J.P. Madgett	4,088	7,330	5,376	7,762	8,028	9,114	10,041	4,976	4,827	4,276
Stoneman	4,663	790	0	0	0	0	0	0	0	0
Madison Gas and Electric Co. Blount Street	8,436	3,851	6,923	5,969	2,762	2,958	397	278	1	1
Northern States Power Co. Bay Front	2,708	393	786	1,196	1,149	1,041	735	347	286	68
Wisconsin Electric Power Co.										
Oak Creek	122,472	45,650	22,831	12,903	13,695	14,472	14,823	13,032	14,021	2,200
Pleasant Prairie	4,972	26,933	28,726	33,656	2,229	1,092	988	1,195	928	3,519
Port Washington	42,295	4,009	15,572	2	4	4	6	6	5	739
Valley	41,761	14,053	15,835	8,482	6,848	6,887	5,376	4,890	4,226	11

Wisconsin Power and Light Co.

| Blackhawk | 2,006 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Columbia 1 | 24,937 | 18,616 | 15,056 | 13,729 | 12,093 | 13,561 | 11,833 | 14,527 | 12,340 | 12,678 |
| Columbia 2 | 14,614 | 13,909 | 13,270 | 12,370 | 13,332 | 13,303 | 12,396 | 13,192 | 12,429 | 11,921 |
| Edgewater 1-4 | 60,014 | 38,021 | 8,962 | 9,103 | 7,166 | 7,205 | 5,666 | 5,758 | 5,785 | 4,547 |
| Edgewater 5 | 0 | 6,744 | 8,744 | 7,741 | 9,502 | 7,858 | 7,782 | 8,779 | 8,340 | 6,640 |
| Nelson Dewey | 32,304 | 10,985 | 14,275 | 14,999 | 15,064 | 13,531 | 12,646 | 13,454 | 11,505 | 3,304 |
| Rock River | 14,139 | 7,220 | 24 | 12 | 2 | 2 | 4 | 0 | 1 | 3 |
| Wisconsin Public Services Corp. | | | | | | | | | | |
| Pulliam | 42,087 | 25,631 | 6,314 | 12,175 | 10,448 | 8,446 | 4,386 | 5,517 | 3,508 | 1,846 |
| Weston 1,2 | 21,009 | 6,589 | 3,340 | 3,988 | 2,983 | 2,852 | 2,060 | 2,601 | 1,679 | 1,133 |
| Weston 3 | 0 | 7,598 | 8,358 | 9,540 | 6,125 | 7,338 | 5,912 | 7,216 | 5,593 | 4,236 |
| Weston 4 | 0 | 0 | 0 | 0 | 0 | 333 | 972 | 1,120 | 904 | 687 |

Municipal Utilities

Manitowoc	1,318	1,727	3,282	217	1,033	1,706	794	593	435	91
Marshfield	1,651	139	0	0	0	0	0	0	0	0
Menasha	991	695	79	0	0	0	0	0	0	0
Total										
Utility Sources	513,622	275,523	189,363	175,734	135,691	133,231	108,105	110,544	91,305	61,157
All Other Sources	172,777	101,517	87,115	68,600	67,838	101,419	89,849	94,150	40,474	46,702
All Stationary Sources	686,399	377,040	276,478	244,334	203,529	234,650	197,954	204,694	131,779	107,859
Percent Utility Sources	74.8%	73.1%	68.5%	71.9%	66.7%	56.8%	54.6%	54.0%	69.3%	56.7%

[^29]
SULFUR DIOXIDE EMISSIONS
 33.0\%

Utility sulfur dioxide

 emissions decreased 33.0 percent from 2011 to 2012. Declines in total emissions will depend on the growth in coal fired generation, old plant retirement, the effectiveness of future energy efficiency efforts and increased use of natural gas and renewable energy.
Electric Utility Nitrogen Oxides Emissions

NITROGEN
OXIDES
EMISSIONS
Utility nitrogen oxides
emissions decreased
24.4 percent from 2011
to 2012. Future decreases
in total emissions will
depend on the growth
in coal fired generation,
old plant retirement, the
effectiveness of future
energy efficiency efforts,
increased use of natural
gas and renewable
energy, and the
disposition of proposed
U.S. EPA rules.
Recent changes in
combustion technology
have resulted in reduced
NOX emissions for some
generating plants.

1989-2012 TONS

Year	$\mathbf{1 9 8 9}$	$\mathbf{1 9 9 0}$	$\mathbf{2 0 0 0}$	$\mathbf{2 0 0 5}$	$\mathbf{2 0 0 7}$	$\mathbf{2 0 0 8}$	$\mathbf{2 0 0 9}$	$\mathbf{2 0 1 0}$	$\mathbf{2 0 1 1}$	2012P
Dairyland Power Cooperative										
Alma	1,934	1,962	2,774	3,834	4,883	3,671	1,100	763	367	171
Genoa	5,443	5,304	3,611	3,717	3,556	2,696	1,574	1,669	769	2,841
J.P. Madgett	4,728	4,963	4,845	4,469	4,114	3,962	3,636	2,898	2,932	651

Madison Gas and Electric $\mathbf{C o}$.

| Blount Street | 1,511 | 1,165 | 1,480 | 1,187 | 463 | 568 | 78 | 88 | 47 | 66 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Northern States Power Co.

Bay Front	0	0	1,288	1,527	1,590	1,562	916	665	535	255
Wisconsin Electric Power $\mathbf{C o}$.										
OakCreek	13,967	8,917	19,786	4,650	4,646	4,978	5,530	4,982	5,657	1,978
Pleasant Prairie	17,701	16,356	18,452	11,318	2,560	2,862	2,623	2,711	2,498	1,003
PortWashington	1,005	771	4,074	45	111	129	129	131	115	2,110
Valley	4,414	4,874	7,259	3,893	3,268	3,106	1,817	1,446	1,250	48

Wisconsin Power and Light \mathbf{C}.

Columbia 1	6,059	6,844	7,981	3,022	2,655	2,715	2,438	2,899	2,781	2,943
Columbia 2	7,943	10,336	6,874	2,829	2,484	2,549	2,329	2,447	2,703	2,655
Edgewater 1-4	16,583	16,684	12,817	3,781	2,697	2,805	1,409	1,503	1,563	1,164
Edgewater 5	2,960	3,638	8,743	2,282	1,976	1,698	1,552	1,791	1,735	1,442
Nelson Dewey	9,997	9,997	5,413	3,060	2,938	2,589	2,382	3,082	3,237	2,626
Rock River	4,367	3,697	419	373	108	88	33	6	6	39

Wisconsin Public Services Corp.

Pulliam	6,769	7,087	8,045	9,235	8,222	6,591	3,391	2,705	1,348	854
Weston 1,2	3,003	3,308	3,262	3,754	3,039	2,699	971	1,212	786	511
Weston 3	2,374	2,360	3,228	4,385	2,529	2,593	2,034	1,492	1,165	785
Weston 4	0	0	0	0	0	281	794	922	914	822

Municipal Utilities

| Manitowoc | 923 | 923 | 102 | 88 | 278 | 593 | 245 | 234 | 22 | 41 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | :---: | :---: |
| Total | | | | | | | | | | |
| Utility Sources | 111,481 | 109,186 | 120,453 | 67,449 | 52,117 | 48,735 | 34,981 | 33,646 | 30,429 | 23,005 |
| All Other Sources | 86,473 | 24,774 | 19,625 | 45,232 | 42,660 | 48,287 | 43,196 | 48,621 | 20,779 | 24,048 |
| All Stationary Sources | 197,954 | 133,960 | 140,078 | 112,681 | 94,777 | 97,022 | 78,177 | 82,267 | 51,208 | 47,053 |
| Percent Utility Sources | 56.3% | 81.5% | 86.0% | 59.9% | 55.0% | 50.2% | 44.7% | 40.9% | 59.4% | 48.9% |

p Preliminary estimates.
r Revised.
Source: Wisconsin Department of Natural Resources, Annual Survey of Point Source Emissions, Sulfur Dioxide and Nitrogen Oxides Emissions Report PUBL-AM-343 and published by facility on the Wisconsin Department of Natural Resources website at http://dnr.wi.gov/topic/AirEmissions/ (1986-2012).

Wisconsin Sulfur Dioxide and Nitrogen Oxides Emissions and Coal Use

```
1980-2012 SULFUR DIOXIDE EMISSIONS AND COAL USE
```


1989-2012 NITROGEN OXIDES EMISSIONS AND COAL USE

a 1993 target established in Wisconsin Statutes, 285.45(2)(a). http://www.legis.state.wi.us/statutes/Stat0285.pdf. Target is for all major utilities and large sources.
b 1991 target established in Wisconsin Statutes, 285.47(2). http://www.legis.state.wi.us/statutes/Stat0285.pdf. Target is for all major utilities.
Source: Wisconsin State Energy Office.

Wisconsin Power Plant Inventory, 2012

| | Nameplate
 Capacity
 Utility/Site | Number
 of Units |
| :---: | :---: | :---: | | Primary |
| :---: |
| Fuel |

Dairyland Power Cooperative

Alma 4,5	136.0	2	Coal
Elk Mound	71.0	2	Natural Gas
Flambeau	22.0	3	Hydro b
Genoa 3	345.6	1	Coal
J.P. Madgett	387.0	1	Coal
Seven Mile Creek	4.1	4	Biomass LFG9
Stiles	1.0	2	Hydro $^{\text {b }}$
Various Biogas Methane	1.6	2	Biogas
Washington Island	5.0	7	Fuel Oil

Madison Gas and Electric $\mathbf{C o .}$			
Blount Street 6,7	100.0	2	Natural Gas
Fitchburg 1, 2	57.6	2	Natural Gas
Nine Springs	16.2	1	Natural Gas
Portables	54.0		Fuel Oil
Rosiere	11.2	17	Wind
Sycamore	41.6	2	Natural Gas
Various Hydrogen	0.01	1	Hydrogen
Various Solar	0.1		Solar
W. Marinette 34	83.0	1	Natural Gas
West Campus	169.3	3	Natural Gas

Northern States Power Co.

Bay Front 4, 5, 6	67.2	3	Biomass Wood
Flambeau	16.0	1	Natural Gas
French Island 1,2	30.4	2	Biomass Wood
French Island 3, 4	157.6	2	Fuel Oil
Various Hydro	240.9	58	Hydro ${ }^{\text {b }}$
Wheaton 1-4	216.0	4	Natural Gas
Wheaton 5-6	106.2	2	Fuel Oil
Shared Ownership			
Columbia $1^{\text {e }}$	512.0	1	Coal
Columbia $2^{\text {e }}$	511.0	1	coal
Edgewater $4^{\text {f }}$	330.0	1	Coal
Elm Road C1 ${ }^{1}$	1402.6	2	coal
Weston $4^{\text {d }}$	595.0	1	coal

[^30]
$\begin{array}{cccc} & \begin{array}{c}\text { Nameplate } \\ \text { Capacity } \\ \text { Utility/Site }\end{array} & \begin{array}{c}\text { Number } \\ \text { (MW) }\end{array} & \begin{array}{c}\text { Primary Units }\end{array} \\ \text { Fuel }\end{array}$

Wisconsin Electric Power Co.

Blue Sky Green Field	145.2	88	Wind
Byron	1.3	2	Wind
Concord	381.2	4	Natural Gas
Domtar Rothschild	50.0	1	Biomass Wood
Germantown 1, 2, 3, 4	244.8	4	Fuel Oil
Germantown 5	106.9	1	Natural Gas
Glacier Hills	162.0	90	Wind
Milwaukee	11.0	1	Coal
Montfort	30.0	20	Wind
Paris	381.2	4	Natural Gas
Pleasant Prairie 1,2	1233.0	2	Coal
Pleasant Prairie 3	2.0	1	Fuel Oil
Port Washington 1-3	1182.0	6	Natural Gas
S. Oak Creek 5-8	1191.6	4	Coal
Valley 1, 2	272.0	2	Coal
Valley 3	2.7	1	Fuel Oil
Various Hydro	13.6	8	Hydro
Various Solar	0.003	3	Solar
Wisconsin Power and Light Co.			
Cedar Ridge	67.7	41	Wind

Edgewater 3,5	440.0	2	Coal
Neenah	371.0	2	Natural Gas

| Nelson Dewey 1,2 200.0 | 2 | Coal |
| :--- | :--- | :--- | :--- |

Riverside	695.7	3	Natural Gas

$\begin{array}{llll}\text { Rock River 3-6 } & 144.0 & 4 & \text { Natural Gas }\end{array}$
$\begin{array}{llll}\begin{array}{l}\text { Sheboygan Energy } \\ \text { Center }\end{array} & 380.0 & 2 & \text { Natural Gas }\end{array}$

Sheepskin	40.0	1	Natural Gas
South Fond Du Lac	172.0	2	Natural Gas

Various Biogas Methane	0.3	10	Biogas
Various Hydro	36.6	12	Hydro b

DePere	187.2	1	Natural Gas
Fox Energy Center	620.0	3	Natural Gas
Lincoln	9.2	14	Wind
Pulliam 31	91.0	1	Natural Gas
Pulliam 5-8	350.2	4	Coal
Various Hydro	92.2	47	Hydro ${ }^{\text {b }}$
Various Solar	0.05	8	Solar
W. Marinette 31, 32	167.1	3	Natural Gas
W. Marinette 33	83.0	1	Natural Gas
Weston 1-3	492.1	3	Coal
Weston 31, 32	76.3	2	Natural Gas
Municipal Utilities			
Manitowoc, City of	117.4	3	Coal/RDFY Coke
Manitowoc, City of	30.0	2	Natural Gas
Menasha, City of	28.0	3	Coal
Merchant/IPP			
Forward Wind	129.0	86	Wind
Point Beach	1073.6	2	Nuclear
Various Landfill Gas	43.4	38	Biomass LFG9

Statewide Utilities

Statewide	1073.6	2	Nuclear Renewables (biomass,
Statewide	199.9	90	biogas, solar)

	Nameplate Capacity (MW)	Number of Units	Primary Utility $/$ Site $^{\mathrm{a}}$

Wisconsin Public Services Corp.
17029.4
$\begin{array}{llll}\text { Various Landfill Gas } & 2.8 & 13 & \text { Biomass LFG9 }\end{array}$

Various Solar	0.01	5	Solar

CHAPTER 3

Renewable Energy

A Quick Guide to

Renewable Energy
Renewable energy resources play a key role in Wisconsin's efforts to reduce dependence on imported fuels. According to Wisconsin Statutes 196.374(1)(j), a renewable resource "derives energy from any source other than coal, petroleum products, nuclear power, or ...natural gas." This energy statistics publication looks at the primary renewable resources used in Wisconsin: solar, wind, water, biomas/biogas, and ethanol.

Wind power uses turbines-residential and commercial or utility sized - to generate electricity for distribution on the electric grid. A map of wind production sites, and wind energy potential across

> Wisconsin can be found in the back of this publication.

Biogas is produced from the state's landfills and agricultural manure digesters. In Wisconsin statutes and in data from U.S. Energy Information Administration, biogas
is included in the definition of biomass. In this statistics book, we break out biogas from biomass to provide further definition and detail about these resources in the state.

Solar photovoltaic uses sunlight to generate electricity to displace energy normally purchased from the electric grid, or to add energy to the electric grid. A map of solar intensity across the United States Wisconsin can be found in the back of this publication.

Hydro power uses the kinetic energy of moving water to generate electricity for distribution on the electric grid. A map of hydroelectric sites in Wisconsin can be found in the back of this publication.

Ethanol is a renewable transportation fuel primarily made from corn. It is used as the oxygenate in reformulated gasoline sold in southeastern Wisconsin and as E10 and E85 throughout the state. A listing of ethanol facilities is on the State Energy Office website at: http://www.stateenergyoffice.wi.gov/docview.asp?docid=11272\&locid=160.

Wisconsin Total Renewable Energy Use, by Type of Fuel

OVERALL renewable ENERGY END-USE 0.2\%

Overall renewable energy resource use in Wisconsin increased 0.2 percent in 2012.

Ethanol use in the transportation sector increased 31.0 percent.

Hydro generation includes electricity generation by Wisconsin utilities and dams owned by industrial users (e.g., paper mills). Solar and wind energy figures include distributed energy sold to utilities by residential and commercial users.

This table includes all renewable energy used in Wisconsin for all applications, including space heating, electricity generation, transportation fuels, and for other applications that displace fossil fuels.

1970-2012 TRILLIONS OF BTU

1970-2012 TRILLIONS OF BTU AND PERCENT OF TOTAL

Year	Hydro		Biomass		Solar		Biogas		Ethanol ${ }^{\text {a }}$		Wind		Total
1970	5.2	19.0\%	22.1	81.0\%	0.00000	0.0\%	0.0	0.0\%	0.0	0.0\%	0.00	0.0\%	27.3
1975	5.5	18.7\%	23.9	87.3\%	0.00000	0.0\%	0.0	0.0\%	0.0	0.0\%	0.00	0.0\%	29.4
1980 ${ }^{\circ}$	6.1	12.5\%	42.8	87.5\%	0.00000	0.0\%	0.0	0.0\%	0.0	0.0\%	0.00	0.0\%	48.9
$1985{ }^{\text {r }}$	7.8	15.0\%	43.9	84.7\%	0.00000	0.0\%	0.0	0.0\%	0.1	0.2\%	0.00	0.0\%	51.8
1990'	6.9	13.7\%	42.7	84.9\%	0.00000	0.0\%	0.0	0.0\%	0.7	1.4\%	0.00	0.0\%	50.3
$1995{ }^{\text {r }}$	8.1	16.3\%	36.2	72.5\%	0.00000	0.0\%	1.5	3.1\%	4.1	8.2\%	0.00	0.0\%	49.9
$2000{ }^{\text {r }}$	6.8	12.3\%	37.7	68.1\%	0.00000	0.0\%	2.8	5.0\%	7.9	14.3\%	0.16	0.3\%	55.3
$2005{ }^{\text {r }}$	5.3	8.4\%	43.3	68.9\%	0.00652	0.0\%	3.5	5.6\%	10.4	16.5\%	0.32	0.5\%	62.8
$2006{ }^{\text {r }}$	5.6	8.5\%	43.2	66.3\%	0.01227	0.0\%	5.1	7.8\%	11.0	16.9\%	0.35	0.5\%	65.2
2007b,r	5.1	7.0\%	47.4	64.9\%	0.01674	0.0\%	6.5	8.9\%	13.6	18.7\%	0.38	0.5\%	72.9
2008	5.4	6.7\%	46.2	57.5\%	0.02728	0.0\%	8.7	10.9\%	18.3	22.8\%	1.67	2.1\%	80.4
2009 r	5.0	6.2\%	42.5	52.6\%	0.03528	0.0\%	10.2	12.7\%	19.4	24.0\%	3.59	4.4\%	80.7
$2010{ }^{\circ}$	7.6	8.9\%	42.6	49.9\%	0.04930	0.1\%	9.8	11.5\%	21.6	25.3\%	3.73	4.4\%	85.3
$2011{ }^{1}$	7.7	8.7\%	47.4	53.2\%	0.07449	0.1\%	10.6	12.0\%	19.2	21.5\%	4.06	4.6\%	89.1
$2012^{\text {p }}$	5.5	6.1\%	42.0	47.1\%	0.09600	0.1\%	11.2	12.5\%	25.1	28.1\%	5.41	6.1\%	89.3

a Ethanol is blended with a petroleum-based fuel to produce reformulated gasoline, E10 and E85.
b All figures for solar energy, biomass and biogas were historically revised in 2007 to more accurately represent a revision to methodology and data sources. For example, this table does not include estimated passive solar, municipal solid waste or other refuse derived fuels, (e.g., railroad ties, tires) except where defined by law as a renewable fuel.
p Preliminary estimates.
r Revised.
Source: U.S. Department of Energy, Energy Information Administration, Estimates of U.S. Wood Energy Consumption from 1949 to 1981 (August 1983); Public Service Commission of Wisconsin, unpublished data compiled from annual reports (2007-2012); Focus on Energy, aggregated data (2005-2012); survey data from conversations and emails with utilities, independent operators of landfills and/or waste water treatment plants, and public schools (2007-2012); Department of Revenue Monthly Motor Fuel Consumption Report (2000-2012); Energy Center of Wisconsin, Wisconsin Agricultural Biogas Casebook (2008); Wisconsin Department of Natural Resources, Annual Survey of Point Source Emissions, unpublished (1972-2012); Wisconsin Department of Administration, Division of Energy, "Wisconsin Residential Wood Energy Model", unpublished (1981-2012); Compiled from renewable energy tables in this publication.

Wisconsin Total Renewable Energy Production and Use, by Economic Sector

This table includes all renewable energy used in Wisconsin for all applications, including space heating, electricity generation, transportation fuels, and for other applications that displace fossil fuels.

1970-2012 TRILLIONS OF BTU

1970-2012 TRILLIONS OF BTU AND PERCENT OF TOTAL

Year	Residential		Commercial		Industrial		Electric Utility		Transportation		Total Resources	Total End Use
1970	11.9	43.6\%	0.2	0.7\%	10.4	38.0\%	4.8	17.7\%	0.0	0.0\%	27.3	22.5
1975	11.8	40.1\%	0.2	0.7\%	12.3	42.0\%	5.1	17.2\%	0.0	0.0\%	29.4	24.3
1980	26.9	55.0\%	0.2	0.4\%	16.2	33.2\%	5.6	11.4\%	0.0	0.0\%	48.9	43.3
1985	26.1	50.4\%	0.2	0.4\%	18.4	35.5\%	7.0	13.5\%	0.1	0.2\%	51.8	44.8
1990	21.4	42.6\%	0.3	0.5\%	21.0	41.8\%	6.9	13.7\%	0.7	1.4\%	50.3	43.4
$1995{ }^{\text {r }}$	22.4	44.8\%	0.6	1.1\%	15.2	30.5\%	7.7	15.4\%	4.1	8.2\%	49.9	42.2
$2000{ }^{\text {r }}$	25.0	45.2\%	0.5	0.9\%	14.9	26.9\%	7.0	12.7\%	7.9	14.3\%	55.3	48.3
2005	29.4	46.7\%	0.7	1.2\%	15.1	24.0\%	7.2	11.5\%	10.4	16.5\%	62.8	55.6
$2006{ }^{\text {r }}$	28.4	43.5\%	1.0	1.5\%	17.4	26.7\%	7.4	11.4\%	11.0	16.9\%	65.2	57.8
2007, ${ }^{\text {, }}$	31.4	43.0\%	1.5	2.0\%	20.2	27.7\%	6.2	8.5\%	13.6	18.7\%	72.9	66.7
2008	36.2	45.0\%	1.7	2.1\%	15.8	19.7\%	8.3	10.4\%	18.3	22.8\%	80.4	72.1
2009 r	31.9	39.5\%	2.7	3.4\%	16.2	20.0\%	10.5	13.1\%	19.4	24.0\%	80.7	70.2
$2010{ }^{\text {r }}$	30.7	36.0\%	2.3	2.6\%	18.3	21.4\%	12.6	14.7\%	21.6	25.3\%	85.3	72.7
2011	34.6	38.8\%	2.2	2.5\%	19.6	22.0\%	13.6	15.2\%	19.2	21.5\%	89.1	75.5
$2012{ }^{\text {p }}$	29.9	33.5\%	2.6	3.0\%	18.8	21.1\%	12.8	14.4\%	25.1	28.1\%	89.3	76.5

a $\operatorname{In} 2007$, the figures in this table were revised to remove non-metered resources such as passive solar energy and resources not considered renewable under Wisconsin law (e.g., municipal solid waste and refuse derived fuel such as railroad ties and tires). This impacted all sectors when compared to previous versions of this publication.
p Preliminary estimates.
r Revised.
Source: Focus on Energy aggregated and verified savings data (2005-2012); survey data from conversations and emails with utilities, independent operators of landfills and/or waste water treatment plants, and public schools (2007-2012); Department of Revenue Monthly Motor Fuel Consumption Report (2000-2012); Energy Center of Wisconsin, Wisconsin Agricultural Biogas Casebook (2008); Public Service Commission of Wisconsin, unpublished data compiled from utility annual reports (1970-2012). http://psc.wi.gov/apps40/annlreport/default.aspx

TOTAL RENEWABLE END-USE energy 1.2\%

Wisconsin's total, renewable end use energy increased by 1.2 percent. The residential and industrial sectors use the most renewable energy, primarily due to woodburning in these sectors. Residential and commercial data also include solar hot water, photovoltaic systems and wind power. Data reported in the electric sector represents resource energy, meaning that the renewable fuels are used to generate electricity—by the utilities and through distributed generation-sold through the grid. Transportation sector renewable energy measures use of ethanol blended with gasoline and sold as reformulated gasoline, E10 and E85.

Maps of Wisconsin's hydroelectric sites, wind installations ("wind farms") and U.S. potential for biomass and solar can be found in the Map Appendix in the back of this book.

Wisconsin Renewable Energy Electricity Generated and Purchased

RENEWABLE ELECTRICITY GENERATION 4.8\%

Wind power in this table represents wind power from in-state wind production facilities, and does not include generation at out-of-state sites owned by, or purchased by, Wisconsin utilities. Increases in wind generation represent efforts of Wisconsin's utilities to add wind power to their overall energy portfolio to meet requirements of the Renewable Portfolio Standard (RPS).

In this table, biomass includes wood, paper pellets and black liquor. Biogas includes methane burned at landfills, waste water treatment facilities, and agricultural manure digesters to generate electricity. Solar generation comes primarily from distributed energy sources such as residences with photovoltaic installations that sell power to the electric utility for distribution on the electric grid.

1990-2012 MILLIONS OF kWh AND PERCENT OF TOTAL

Year	Hydro		Biomass		Biogas		Wind		Solar		Total
1990	2,014.4	96.7\%	68.1	3.3\%	0.0	0.0\%	0.0	0.0\%	0.00	0.0\%	2,082.5
1995	2,378.5	93.5\%	54.2	2.1\%	110.1	4.3\%	0.0	0.0\%	0.00	0.0\%	2,542.8
1996	2,696.0	94.1\%	56.5	2.0\%	112.8	3.9\%	0.0	0.0\%	0.00	0.0\%	2,865.3
1997	2,483.3	93.3\%	57.5	2.2\%	121.2	4.6\%	0.0	0.0\%	0.00	0.0\%	2,662.0
1998	1,747.4	89.1\%	60.9	3.1\%	151.2	7.7\%	2.2	0.1\%	0.00	0.0\%	1,961.7
1999	1,984.6	89.2\%	68.6	3.1\%	147.4	6.6\%	23.7	1.1\%	0.00	0.0\%	2,224.3
2000	1,990.8	86.1\%	78.1	3.4\%	197.2	8.5\%	46.6	2.0\%	0.00	0.0\%	2,312.7
2001	2,056.2	85.2\%	83.0	3.4\%	203.3	8.4\%	70.2	2.9\%	0.00	0.0\%	2,412.7
2002	2,515.0	84.9\%	70.6	2.4\%	267.3	9.0\%	111.1	3.7\%	0.03	0.0\%	2,964.0
2003	1,843.3	79.9\%	79.4	3.4\%	280.5	12.2\%	104.0	4.5\%	0.12	0.0\%	2,307.3
2004	1,980.7	79.2\%	98.1	3.9\%	317.5	12.7\%	105.3	4.2\%	0.30	0.0\%	2,501.9
2005	1,550.7	76.9\%	148.2	7.3\%	224.3	11.1\%	93.5	4.6\%	0.46	0.0\%	2,017.1
2006	1,626.9	56.7\%	815.8	28.4\%	322.2	11.2\%	102.7	3.6\%	0.91	0.0\%	2,868.6
$2007{ }^{\text {a }}$	1,483.2	50.8\%	914.4	31.3\%	412.6	14.1\%	110.4	3.8\%	1.57	0.1\%	2,922.2
2008	1,585.6	47.5\%	698.6	20.9\%	563.6	16.9\%	488.4	14.6\%	3.45	0.1\%	3,339.6
2009	1,460.9	34.8\%	1,017.2	24.3\%	657.1	15.7\%	1,051.6	25.1\%	5.31	0.1\%	4,192.2
2010	2,217.0	45.4\%	913.0	18.7\%	655.3	13.4\%	1,092.3	22.4\%	7.54	0.2\%	4,885.1
2011	2,258.9	43.0\%	1,080.3	20.6\%	710.0	13.5\%	1,190.5	22.7\%	13.20	0.3\%	5,253.0
$2012{ }^{\text {p }}$	1,608.2	32.2\%	1,053.3	21.1\%	737.7	14.7\%	1,583.7	31.7\%	19.28	0.4\%	5,002.2

[^31]
Wisconsin Electric Utility and Non-Utility Hydroelectric Generation

1970-2012 MILLIONS OF kWh

ELECTRIC UTILITY HYDROELECTRIC PRODUCTION

Year	Wisconsin Operated Utility Plant Location		Total Utility	Wisconsin Non-Utility	Total Wisconsin	Total Wisconsin Precipitation (inches per year)
	Wisconsin ${ }^{\text {a,b }}$	Michigan				
1970	1,413.2	448.1	1,861.3	110.0	1,523.2	32.0
1975	1,482.9	450.3	1,933.2	129.4	1,612.3	32.4
1980	1,628.3	488.9	2,117.2	160.4	1,788.7	32.5
1985	2,046.3	543.6	2,589.9	235.9	2,288.2	37.0
1990	1,791.0	340.2	2,131.2	223.4	2,014.4	36.2
1995	2,097.1	440.1	2,537.2	281.4	2,378.5	32.9
1996	2,401.9	500.7	2,902.6	294.1	2,696.0	32.8
1997	2,182.2	458.5	2,640.7	301.1	2,483.3	28.6
1998	1,517.8	324.0	1,841.8	229.6	1,747.4	32.7
1999	1,734.0	416.1	2,150.1	250.6	1,984.6	34.0
2000	1,749.4	369.6	2,119.0	241.4	1,990.8	34.8
2001	1,887.6	383.3	2,270.9	168.6	2,056.2	35.5
2002	2,282.9	485.8	2,768.7	232.1	2,515.0	35.2
2003	1,623.4	373.4	1,996.8	219.9	1,843.3	28.4
2004	1,748.4	401.0	2,149.4	232.3	1,980.7	35.3
2005	1,499.0	338.6	1,837.6	51.7	1,550.7	29.3
2006	1,446.0	326.3	1,772.3	180.9	1,626.9	30.7
2007	1,314.0	272.6	1,586.6	169.2	1,483.2	34.0
2008	1,428.0	272.6	1,700.6	157.6	1,585.6	33.6
2009	1,352.7	251.2	1,603.9	108.2	1,460.9	30.3
2010	2,026.7	330.3	2,357.0	190.3	2,217.0	39.7
2011	2,048.1	339.6	2,387.7	210.8	2,258.9	30.7
$2012{ }^{\text {p }}$	1,455.0	257.4	1,712.4	153.2	1,608.2	28.0

a Including Wisconsin power cooperatives and Independent Power Producers.
b From 1970 to 1989, data were sourced from the Public Service Commission bulletins; from 1990 to 2008, data are sourced from the federal Energy Information Administration (EIA). Beginning in 2009, data are from the Wisconsin Public Service Commission. Totals here may not match other hydroelectric totals in the book due to different data sources.

p Preliminary estimates.

Source: Public Service Commission of Wisconsin, Accounts and Finance Division, Generating Plants Operated by Wisconsin Electric Utilities, Bulletin \#46 (1971-1994); U.S. Department of Agriculture, Rural Electrification Administration, Annual Statistical Report, REA Bulletin 1-1 (1971-1994); Wisconsin Department of Administration, Division of Energy, Wisconsin Hydroelectric Generation Model, unpublished (1994); National Oceanic and Atmospheric Administration, Monthly State Heating Degree Days, Historical Climatology Series 5-1 (April 2004); U.S. Department of Energy, Energy Information Administration, Electric Power Monthly [DOE/EIA-0226 (2010/03)] (March 2010) (1990-2008),
http://www.eia.doe.gov/cneaf/electricity/epa/epa_sprdshts.html;
Public Service Commission of Wisconsin, unpublished electrical production data (2005-2012).

Wisconsin Wood Use, by Economic Sector

Wood energy use in Wisconsin decreased by 12.4 percent in 2012. This table shows wood used in Wisconsin for applications that displace the use of fossil fuels, such as space
heating or water heating. Wood used in this table does not represent wood used to generate electricity.

In previous versions of this book, the electric sector was included in this table. Electric sector data is included in tables elsewhere in this chapter.

A map of biomass

 potential distribution across the United States can be found in the Map Appendix in the back of this book.Residential wood use is estimated using a variety of factors including heating degree days, cost of other winter fuels and gross domestic product, the efficiency factor of wood, and the number of households in Wisconsin.
The Commercial sector wood use includes schools, hospitals, wholesalers and retailers, and construction.

1970-2012 TRILLIONS OF BTU AND PERCENT OF TOTAL

Year	Residential ${ }^{\text {a }}$		Commercial ${ }^{\text {b }}$		Industrial		Total
1970	11.9	53.8\%	0.20	0.9\%	10.0	45.2\%	22.1
1975	11.8	49.4\%	0.20	0.8\%	11.9	49.8\%	23.9
1980 ${ }^{\text {r }}$	26.9	62.9\%	0.20	0.5\%	15.7	36.7\%	42.8
$1985{ }^{\text {r }}$	26.1	59.4\%	0.20	0.5\%	17.6	40.1\%	43.9
1990 ${ }^{\text {r }}$	21.4	51.4\%	0.26	0.6\%	20.0	48.0\%	41.7
$1995{ }^{\text {r }}$	22.4	62.8\%	0.55	1.6\%	12.7	35.6\%	35.6
1996 ${ }^{\text {r }}$	25.0	64.7\%	0.50	1.3\%	13.1	34.0\%	38.6
$1997{ }^{1}$	23.7	63.7\%	0.48	1.3\%	13.1	35.1\%	37.2
1998 ${ }^{\text {r }}$	19.3	59.0\%	0.57	1.8\%	12.8	39.2\%	32.7
1999r	21.5	63.9\%	0.62	1.8\%	11.5	34.2\%	33.7
$2000{ }^{\text {r }}$	25.0	68.1\%	0.48	1.3\%	11.2	30.6\%	36.7
$2001{ }^{1}$	24.1	67.3\%	0.38	1.1\%	11.3	31.6\%	35.8
$2002{ }^{2}$	24.6	67.4\%	0.37	1.0\%	11.5	31.6\%	36.5
$2003{ }^{\text {r }}$	27.3	69.4\%	0.36	0.9\%	11.7	29.7\%	39.4
$2004{ }^{\text {r }}$	27.5	67.9\%	0.32	0.8\%	12.7	31.4\%	40.5
$2005{ }^{\text {r }}$	29.3	70.2\%	0.27	0.6\%	12.2	29.1\%	41.8
$2006{ }^{\text {r }}$	28.4	71.5\%	0.24	0.6\%	11.0	27.9\%	39.7
$2007{ }^{\text {r }}$	31.4	71.3\%	0.44	1.0\%	12.2	27.7\%	44.0
$2008{ }^{\text {r }}$	36.2	83.2\%	0.54	1.2\%	6.8	15.6\%	43.5
2009 r	31.9	82.2\%	0.89	2.3\%	6.0	15.5\%	38.8
2010 ${ }^{\text {r }}$	30.6	78.2\%	0.38	1.0\%	8.1	20.8\%	39.2
2011 ${ }^{1}$	34.5	79.4\%	0.28	0.6\%	8.7	20.0\%	43.5
2012^{p}	29.9	78.4\%	0.19	0.5\%	8.0	21.1\%	38.1

[^32]
Wisconsin Manufacturing Industry Use of Wood Fuel, by Industry Group

1972-2012 THOUSANDS OF TONS AND TRILLIONS OF BTUa

Year	Lumber		Furniture		Paper \& Allied		Other Manufacturing		Total	
	(Tons)	(Btu)								
1972	391.2	4.42	13.2	0.15	508.5	5.75	16.1	0.18	929.0	10.50
1975	437.2	4.94	24.5	0.28	575.6	6.50	17.1	0.19	1,054.4	11.91
1980	447.5	5.06	56.9	0.64	872.8	9.86	12.0	0.14	1,389.2	15.70
1985	427.3	4.83	53.9	0.61	1,046.7	11.83	33.5	0.38	1,561.4	17.64
1990	490.9	5.55	64.0	0.72	1,186.5	13.41	30.0	0.34	1,771.4	20.02
1995	480.6	5.43	29.3	0.33	592.3	6.69	19.9	0.23	1,122.1	12.68
1996	435.9	4.93	29.9	0.34	676.8	7.65	18.6	0.21	1,161.2	13.12
1997	402.2	4.54	23.2	0.26	712.3	8.05	17.6	0.20	1,155.3	13.05
1998	408.1	4.61	22.1	0.25	693.2	7.83	10.9	0.12	1,134.2	12.82
1999	45.4	5.15	22.7	0.26	535.1	6.05	7.9	0.09	1,021.1	11.54
2000	432.3	4.89	20.1	0.23	534.5	6.04	7.5	0.09	994.5	11.24
2001	419.9	4.74	19.0	0.21	554.5	6.27	8.9	0.10	1,002.3	11.33
2002	415.2	4.69	17.2	0.19	577.5	6.53	9.0	0.10	1,019.0	11.51
2003	384.3	4.34	15.3	0.17	626.9	7.08	8.2	0.09	1,034.7	11.69
2004	434.5	4.91	13.5	0.15	665.5	7.52	10.5	0.12	1,123.9	12.70
2005	421.8	4.77	10.8	0.12	633.4	7.16	10.5	0.12	1,076.5	12.16
2006	356.1	4.02	7.6	0.09	597.3	6.75	16.5	0.19	977.4	11.05
2007	361.3	4.08	7.5	0.08	690.4	7.80	19.3	0.22	1,078.5	12.19
$2008{ }^{\text {b }}$	300.0	3.39	5.6	0.06	272.9	3.08	20.7	0.23	599.3	6.77
2009	256.7	2.90	4.0	0.05	249.3	2.82	21.8	0.25	531.8	6.01
2010	314.2	3.55	2.5	0.03	379.1	4.28	24.5	0.28	720.4	8.14
2011	387.9	4.38	3.2	0.04	353.4	3.99	24.8	0.28	769.2	8.69
2012 ${ }^{\text {p }}$	369.7	4.18	2.5	0.03	321.4	3.63	17.6	0.20	711.2	8.04

The use of wood and wood products as fuel by Wisconsin industries is concentrated among businesses that use or produce a wood product. Lumber mills burn sawdust, bark and scrap wood as a boiler fuel and for kiln drying boards. Furniture and paper companies use scrap wood and wood byproducts for process steam, heating and generating electricity. Wood in Wisconsin is a renewable resource for heating as well as electricity generation.

[^33]
Wisconsin Electric Utility Use of Wood Fuel

In the utility sector, Northern States Power (NSP)/Xcel Energy uses wood for their electricity-generation fuel at the Bay Front and French Island generating plants.

1970-2012

Year	Tons	Billions of Btu
$1970-1975$	0	0
1980	76,282	740
1985	155,717	1,666
1990	299,464	3,112
1995	327,201	3,506
1996	339,803	3,837
1997	304,618	3,326
1998	334,231	3,871
1999	330,491	3,765
2000	296,739	3,430
2001	301,580	3,484
2002	283,774	3,260
2003	267,446	3,154
2004	242,973	2,877
2005	253,638	2,961
2006	288,907	3,482
2007	315,811	3,437
2008	342,684	3,735
2009	362,471	3,868
2010	380,600	4,333
2011	371,212	4,232
2012	394,486	4,588

Wisconsin, Midwest and U.S. Wind Generation and Capacity

2000-2012 WIND GENERATION BY STATE AND YEAR (MEGAWATT HOURS)

2000-2012 WIND GENERATION BY STATE (MEGAWATT HOURS)

Year	Wisconsin $^{\text {a }}$	Illinois	Indiana	lowa	Michigan	Minnesota	Ohio	Midwest Total	United States
2000	2,728	0	0	493,820	0	724,524	0	$1,221,072$	$5,593,261$
2005	92,544	141,146	0	$1,647,134$	1,848	$1,582,477$	13,268	$3,478,417$	$17,810,549$
2006	101,376	254,571	0	$2,317,821$	2,212	$2,054,947$	14,401	$4,745,328$	$26,589,137$
2007	109,283	664,427	0	$2,756,676$	2,723	$2,638,812$	14,748	$6,186,669$	$34,449,927$
2008	487,141	$2,336,996$	238,356	$4,083,787$	141,182	$4,354,620$	15,084	$11,657,166$	$55,363,100$
2009	$1,051,965$	$2,819,532$	$1,403,192$	$7,420,520$	300,172	$5,053,022$	14,114	$18,062,517$	$73,886,132$
2010	$1,088,464$	$4,453,634$	$2,934,043$	$9,170,337$	360,340	$4,791,723$	12,576	$22,811,117$	$94,652,246$
2011	$1,187,730$	$6,213,132$	$3,285,411$	$10,709,177$	456,474	$6,725,695$	198,443	$28,776,062$	$120,176,599$
$\mathbf{2 0 1 2}$	$\mathbf{1 , 5 5 7 , 5 7 8}$	$\mathbf{7 , 7 2 6 , 8 1 0}$	$\mathbf{3 , 2 1 0 , 1 0 4}$	$\mathbf{1 4 , 0 3 2 , 4 9 1}$	$\mathbf{1 , 1 3 1 , 6 8 8}$	$\mathbf{7 , 6 1 5 , 4 0 8}$	$\mathbf{9 8 5 , 4 8 5}$	$\mathbf{3 6 , 2 5 9 , 5 6 4}$	$\mathbf{1 4 0 , 8 2 1 , 7 0 3}$

2000-2012 WIND CAPACITY BY STATE (MEGAWATTS)

Year	Wisconsin	Illinois	Indiana	lowa	Michigan	Minnesota	Ohio	Midwest Total	United States
2000	23	0	1	197	1	271	0	493	2,394
2005	53	105	1	820	2	687	7	1,675	8,733
2006	53	105	1	921	2	829	7	1,918	11,334
2007	53	740	1	1,170	2	1,139	7	3,112	16,596
2008	365	962	131	2,661	124	1,481	7	5,731	24,980
2009	449	1,596	1,037	3,448	143	1,636	7	8,316	34,683
2010	469	1,946	1,340	3,665	164	2,009	7	9,600	39,516
2011	631	2,737	1,340	4,302	376	2,580	160	12,126	45,982
$\mathbf{2 0 1 2}$	$\mathbf{3 7 0}$	$\mathbf{3 , 5 2 0}$	$\mathbf{1 , 5 4 0}$	$\mathbf{5 , 0 0 5}$	$\mathbf{8 7 4}$	$\mathbf{2 , 8 4 2}$	$\mathbf{4 6 2}$	$\mathbf{1 4 , 6 1 3}$	$\mathbf{5 9 , 0 7 5}$

[^34]WISCONSIN WIND GENERATION 31.1\% FROM 2011

In 2012, wind generation in Wisconsin was the third lowest of seven Midwestern states, and increased 31.1 percent over 2011's generation.

The installed wind capacity in Wisconsin is the second lowest in the Midwest and is 1.1 percent of the United States installed wind generation capacity.

Wind generation in the Midwest increased 26 percent from 2011 to 2012, and by 17.2 percent across the country. Wind capacity increased 20.5 percent in the Midwest and 28.5 percent in the U.S.

Since 2000, wind generation in the
Midwest has increased 2,869.5 percent, making wind one of the fastest growing renewable resources.

U.S. Photovoltaic Module Shipments and Conversion Efficiency

Shipments of photovoltaic (PV) modules are measured in peak kilowatts (KW), also known as the rated capacity (how much power can be produced under standardized test conditions). Data in the table show KWs of shipments for each year, as well as cumulative shipments since the Energy Information Administration (EIA) began collecting these data.

Since 1982 total shipments of PV systems have exceeded 14,000 Megawatts (MW). Since 2003 annual shipments of PV systems have been doubling every 18 months, an annual average growth of 56.1 percent. The volume of shipments is a good proxy for the growth of PV in the commercial, industrial and residential sectors and demonstrates a steady growth in the purchase and installation of PV in the United States.

The table also includes information about conversion efficiency, which measures the fraction of solar energy that is converted into electrical energy. PV modules average a conversion efficiency of about 16 percent for Crystalline Silicon and about 11 percent for Amorphous Silicon.

1982-2012 PHOTOVOLTAIC SHIPMENTS (KILOWATTS)

Year	Photovoltaic Shipments ${ }^{\text {a }}$		Average Energy Conversion Efficiency Photovoltaic					
	Shipments		Crystalline Silicon			Thin-Film Silicon		Concentrator
	Total Annual Peak Kilowatts ${ }^{\text {b }}$	Cumulative Kilowatts	Single Crystal	Cast	Ribbon	Amorphous Silicon	Other	Silicon
1982	4,600	4,600						
$1985{ }^{\text {r }}$	3,848	23,477						
1990r	9,229	56,507						
$1995{ }^{\text {r }}$	19,627	129,530						
$2000{ }^{\text {r }}$	55,007	318,102						
$2005{ }^{\text {r }}$	204,996	877,880						
$2006{ }^{\text {r }}$	320,208	1,198,088						
$2007{ }^{\text {r }}$	494,148	1,692,236	17	14	12	8	12	35
$2008{ }^{\text {r }}$	920,693	2,612,929	19	14	13	8	12	34
2009 r	1,188,879	3,801,808	20	14	13	8	12	38
2010 ${ }^{\text {r }}$	2,644,498	6,446,306		16				27
$2011{ }^{1}$	3,772,075	10,218,381		16				29
$2012^{\text {p }}$	4,655,005	14,873,386		16		1		30

[^35]
U.S. Photovoltaic Modules and Cell Prices

1989-2012 DOLLARS PER PEAK WATT

Growth in photovoltaic
(PV) is demonstrated
by falling prices. From 1990 to 2012, PV module prices fell by 87.3
percent, and the price of cells fell by 83.7 percent.

> A PV module is an integrated assembly of PV cells that generate direct current power for PV systems. The price per watt of a module (about $\$ 1.15 /$ watt) is about 15 percent higher than the most of PV cells (\$1/watt).

Year	Dollars per Peak Watt (nominal ${ }^{\text {a }}$ dollars)		2012 Dollars ${ }^{\text {b }}$	
	Modules	Cells	Modules	Cells
1989	5.14	3.08	8.52	5.11
1990	5.69	3.84	9.09	6.13
1995	4.56	2.53	6.45	3.58
2000	3.46	2.40	4.50	3.12
2001	3.42	2.46	4.35	3.13
2002	3.74	2.12	4.68	2.65
2003	3.17	1.86	3.89	2.28
2004	2.99	1.92	3.56	2.29
2005	3.19	2.17	3.68	2.50
2006	3.50	2.03	3.91	2.27
2007	3.37	2.22	3.66	2.41
2008	3.49	1.94	3.71	2.06
2009	2.79	1.27	2.94	1.34
2010	1.96	1.13	2.04	1.17
2011	1.59	0.92	1.62	0.94
2012 ${ }^{\text {p }}$	1.15	1.00	1.15	1.00

A small grid-connected
fix-mounted PV system
has a retail price of about
\$7 per watt installed. The
PV modules comprise
about half of that price.

[^36]CHAPTER 4

Energy Efficiency Indices

Indices of Wisconsin Energy Efficiency

Energy efficiency activities in the residential and commercial sectors are measured primarily by recording the number of buildings that have received professional audits, installed energy efficiency improvements or were certified as meeting energy efficiency building codes.

1970-2012 MILLIONS OF BTU

Year	$\begin{gathered} \text { Total } \\ \text { Energy Use Per } \\ \$ 1,000 \text { GSPa } \end{gathered}$	Electric Energy Use Per $\$ 1,000$ GSPa	Residential Energy Use Per Capita ${ }^{\text {b }}$	Commercial Energy Use Per Employee ${ }^{\text {d }}$	Industrial Energy Use Per \$1,000 Manufacturing Value Added ${ }^{\mathrm{a}, \mathrm{c}}$	Agricultural Energy Use Per Acre
1970	11.9	0.88	73.4		8.3	1.08
1975	11.0	0.96	74.9		6.3	1.19
1980	10.0	1.01	75.6		5.1	1.43
1985	9.1	1.03	72.4		4.7	1.41
1990	8.8	1.05	73.5	161.0	4.4	1.23
1995	8.4	1.03	79.6	162.4	4.1	1.25
1996	8.1	1.01	80.8	162.0	4.0	1.29
1997	7.9	0.99	76.1	158.5	4.1	1.25
1998	7.5	0.98	70.7	156.2	3.8	1.21
1999	7.4	0.96	74.9	161.0	3.8	1.26
2000	7.3	0.96	75.6	159.3	3.8	1.25
2001	7.2	0.96	75.5	159.3	3.8	1.23
2002	7.1	0.96	76.7	160.8	3.8	1.26
2003	7.0	0.95	80.6	150.3	3.7	1.29
2004	6.9	0.93	78.4	145.1	3.9	1.25
2005	6.8	0.95	77.1	153.1	3.7	1.24
2006	6.4	0.93	71.1	145.0	3.5	1.48
2007	6.7	0.95	75.9	153.4	3.6	1.56
2008	6.8	0.95	77.3	155.9	4.0	1.51
2009	6.4	0.91	73.0	151.0	4.1	1.74
2010	6.4	0.92	71.9	148.9	3.8	1.54
2011	6.2	0.91	72.2	146.9	3.7	1.43
2012^{p}	6.0	0.90	66.8	140.2	3.4	1.59

[^37]
TOTAL
 ENERGY USE PER \$1,000
 of GROSS
 STATE PRODUCT
 4.0\%

These indices can be useful in evaluating energy efficiency trends in Wisconsin. Total Energy Use per $\$ 1,000$ of Gross State Product (GSP), and Electricity Use per $\$ 1,000$ of GSP trended downward by 4.0 and 1.1 percent respectively.

In 2012, Wisconsin
Commercial Energy Use per Employee decreased by 4.5 percent; Industrial Energy Use per $\$ 1,000$
Manufacturing Value
Added decreased 7.6
percent and is 58.9
percent lower than in
1970. Agricultural Energy

Use per Acre increased
7.1 percent in 2012, from
1.6 to 1.71 MMBtu /acre.

Indices of Wisconsin Energy Efficiency

-ー・ー・
WISCONSIN ENERGY USE PER DOLLAR OF GROSS STATE PRODUCT

WISCONSIN ELECTRICITY USE PER DOLLAR OF GROSS STATE PRODUCT
\qquad
RESIDENTIAL ENERGY USE PER CAPITA
-••••••
COMMERCIAL ENERGY USE PER EMPLOYEE

INDUSTRIAL ENERGY USE PER UNIT MANUFACTURING VALUE ADDED OUTPUT

AGRICULTURAL ENERGY USE PER ACRE

1970-2012 ENERGY AND ELECTRICITY USE PER DOLLAR OF GROSS STATE PRODUCTª

1970-2012 ENERGY INDICES BY ECONOMIC SECTORa

[^38]
Indices of Wisconsin Energy Expenditures, 2012 Dollars

```
1970-2012 2012 DOLLARS
```


Year	Agricultural Expenditures Per Acre	Commercial Expenditures Per Employee ${ }^{\text {a }}$	Residential Expenditures Per Household	Industrial Expenditures Per $\$ 1,000$ Value Added	Transportation Expenditures Per Vehicle
1970	14	1,086	1,765	37	1,434
$1975{ }^{\text {r }}$	19	1,375	1,967	41	1,691
1980	31	1,628	2,347	48	2,217
1985	27	1,658	2,280	46	1,608
1990	20	1,251	1,794	33	1,304
$1995{ }^{\text {r }}$	16	1,102	1,686	27	1,185
2000	19	1,163	1,748	31	1,448
2001	19	1,218	1,834	37	1,357
2002	18	1,213	1,759	31	1,266
2003	21	1,246	2,048	35	1,382
2004	22	1,237	2,066	39	1,583
2005	27	1,410	2,205	43	1,777
2006	35	1,426	2,168	41	1,880
2007	38	1,465	2,232	41	1,981
2008	43	1,582	2,369	50	2,256
2009 r	37	1,428	2,065	44	1,520
2010	37	1,421	2,063	40	1,860
$2011{ }^{1}$	40	1,448	2,061	39	2,272
2012 ${ }^{\text {p }}$	45	1,367	1,865	34	2,354

[^39]Source: Compiled from tables in this publication for Wisconsin residential, commercial, industrial, agricultural and transportation energy use.
-—•—•
AGRICULTURAL PER ACRE

RESIDENTIAL PER HOUSEHOLD

TRANSPORTATION PER VEHICLE

COMMERCIAL PER EMPLOYEE

INDUSTRIAL PER $\$ 1,000$ VALUE ADDED

In 2012, Wisconsin saw decreases in more than half of the energy expenditure indices.

The Expenditures per Vehicle increased
3.6 percent, Commercial Expenditures per Employee decreased by 5.6 percent, Agricultural Expenditures per acre increased by 8.7 percent, while Residential

Expenditures per
household decreased 9.5 percent from 2011. The Industrial Expenditures per $\$ 1,000$ of Value Added
decreased by
11.5 percent.

Wisconsin Per Capita Resource Energy Consumption, by Type of Fuel


```
1970-2012 MILLIONS OF BTU
```

Year	Petroleum	Natural Gas	Coal	Renewable	Nuclear	Electric Imports ${ }^{\text {a }}$	Total
1970	103.6	74.1	80.4	6.2	0.4	-6.4	258.3
1975	104.0	80.7	57.4	6.4	24.3	-4.5	268.5
1980	96.6	73.1	69.0	10.4	22.7	-1.4	270.4
1982	85.3	65.8	67.6	10.7	23.5	2.3	255.2
1985	87.7	64.1	78.9	10.9	25.0	-0.4	266.2
1990	89.4	62.6	84.1	10.3	24.8	17.9	289.1
$1995{ }^{\text {r }}$	91.3	74.7	90.9	9.8	23.2	24.1	314.1
1996 ${ }^{\text {r }}$	93.7	78.5	94.7	10.7	21.3	15.6	314.3
1997	94.2	77.1	98.2	10.2	8.1	25.1	313.0
$1998{ }^{1}$	93.6	70.2	94.7	9.1	19.4	20.6	307.7
1999	96.3	72.2	95.8	9.5	23.5	18.9	316.3
2000	92.6	73.3	96.8	10.3	23.1	18.3	314.5
$2001{ }^{1}$	92.4	66.8	96.6	10.0	23.0	22.5	311.4
$2002{ }^{1}$	93.0	70.4	93.2	10.5	24.7	18.4	310.3
2003	93.1	71.8	96.0	10.8	24.0	15.8	311.6
2004	93.8	69.2	97.1	11.2	23.2	17.0	311.4
2005	89.1	73.6	95.3	11.3	14.7	22.5	306.4
$2006{ }^{\text {r }}$	87.5	66.3	91.8	11.6	23.5	10.1	290.8
2007	87.7	70.8	91.3	12.9	24.7	15.6	303.1
$2008{ }^{\text {r }}$	83.7	72.0	95.3	14.2	23.1	12.7	301.0
2009	79.0	68.3	85.2	14.2	24.1	12.0	282.7
2010	79.4	65.3	91.8	15.0	25.2	8.5	285.3
2011	78.5	69.3	86.3	15.7	22.0	11.7	283.4
2012 ${ }^{\text {p }}$	78.6	71.4	72.7	15.7	18.6	18.7	275.6

Wisconsin Residential Electricity and Natural Gas Use Per Customer

Year	Natural Gas ${ }^{\text {a }}$		Electricity	
	Number of Customers (Thousands)	Use Per Customer (Therms)	Number of Customers (Thousands)	Use Per Customer (kWh)
1970 ${ }^{\text {r }}$	750.4	1,451	1,429	6,711
1975 ${ }^{\text {r }}$	858.5	1,388	1,607	7,407
1980	966.0	1,313	1,801	7,716
$1985{ }^{\text {r }}$	1,013.0	1,166	1,870	7,960
1990r	1,123.6	1,023	2,017	8,109
$1995{ }^{\text {r }}$	1,291.4	1,065	2,170	8,586
$2000{ }^{\text {r }}$	1,459.0	925	2,329	8,557
$2005{ }^{\text {r }}$	1,592.6	832	2,526	8,890
$2006{ }^{\text {r }}$	1,611.8	750	2,550	8,540
$2007{ }^{\text {r }}$	1,632.2	812	2,573	8,697
2008 r	1,646.6	864	2,580	8,519
2009	1,656.6	815	2,589	8,273
2010	1,663.6	750	2,595	8,594
$2011{ }^{1}$	1,671.8	783	2,602	8,513
2012 ${ }^{\text {p }}$	1,680.7	680	2,610	8,436

a U. S. Department of Energy/Energy Information Administration data from EIA forms 176 and 861
p Preliminary estimates.
r Revised.
Source: Edison Electric Institute, Statistical Yearbook (1971-1996); Public Service Commission of Wisconsin, Accounts and Finance Division, Statistics of Wisconsin Public Utilities, Bulletin \#8 (1970-1979), Public Service Commission of Wisconsin, form PSC-AF 2 Gas Sales and Sales Ratio (1980-2012); U.S. Department of Energy, Electric Sales and Revenues, 1993-2012 [DOE/EIA-0226(2013/02)], Table 5.4B (February 2013).

ELECTRICITY USE PER CUSTOMER 0.9\%

NATURAL GAS USE PER CUSTOMER 13.2\%

Electricity Use per Customer decreased 0.9 percent in 2012, while natural gas use per customer dropped by 13.2 percent.

The decrease in natural gas relates to the relatively low price of the fuel, and a decrease in Heating Degree Days (HDD) in 2012-a 14.2 percent decrease from to 2011. To learn more about HDDs, see the Miscellaneous chapter of this publication.

Natural Gas data are from the AF2 reports submitted to the Public Service Commission of Wisconsin by gas utilities across the state. The complete datasets are published online at www.stateenergyoffice.
wi.gov under
Statistics/Tables.

Wisconsin Commercial Electricity and Natural Gas Use Per Customer

ELECTRICITY USE PER CUSTOMER 0.1\%

NATURAL GAS USE PER CUSTOMER
13.6\%

Commercial electricity use per customer in 2012 decreased slightly (0.1 percent), while natural gas use per customer fell by 13.6 percent.

The decrease in natural gas relates to the relatively low price for natural gas, and a decrease in Heating Degree Days (HDD) in 2012-a 14.2 percent decrease compared to 2011. To learn more about HDDs, see the

Miscellaneous chapter in this publication.

Data are from the
AF1 and AF2 reports
submitted to the Public
Service Commission of Wisconsin by gas utilities across the state. The complete datasets are published online at www. stateenergyoffice.wi.gov under Statistics/Tables.

1970-2012

Year	Natural Gas		Electricity	
	Number of Customers (Thousands)	Use Per Customer (Therms)	Number of Customers (Thousands)	Use Per Customer (kWh)
1970	50.8	9,377	167	29,701
1975	65.7	9,234	178	42,709
1980	76.7	8,900	193	49,115
$1985{ }^{\prime}$	87.0	7,742	224	47,292
1990	106.0	5,973	229	54,990
$1995{ }^{\text {r }}$	125.5	6,540	254	58,540
2000	140.4	5,615	278	65,817
$2005{ }^{\text {r }}$	155.1	4,843	312	72,150
$2006{ }^{\text {r }}$	159.1	4,552	324	70,272
2007	160.6	4,768	330	71,203
2008	163.0	5,160	334	70,353
2009	163.8	4,840	337	66,748
2010	164.2	4,405	338	67,969
2011	165.0	4,644	341	67,685
2012 ${ }^{\text {p }}$	165.8	4,012	343	67,641

p Preliminary estimates.
r Revised.
Source: Edison Electric Institute, Statistical Yearbook (1971-1996); Public Service Commission of Wisconsin, Accounts and Finance Division, Statistics of Wisconsin Public Utilities, Bulletin \#8 (1970-1979), Public Service Commission of Wisconsin, form PSC-AF 2 Gas Sales and Sales Ratio (1980-2012); U.S. Department of Energy, Electric Sales and Revenues, 1993-2012 [DOE/EIA-0226(2013/02)], Table 5.4B (February 2013).

Focus on Energy Tracked Energy Savings

2001-2012 MILLIONS OF kWhs, THERMS AND DOLLARS

	Verified kWh Saved	Percent of Statewide Sector ${ }^{\text {a }}$ kWh Saved	Verified Therms Saved	Percent of Statewide Sector Sales ${ }^{\text {b }}$ Therms Saved	Dollar Value of Energy Saved	Number of Participants
July 1, 2001 - December 31, 2008						
Total Saved	1,777.72	0.344\%	87,740,863	0.298\%	\$247,506,712	1,706,556
Business	1,102.10	0.306\%	68,836,442	0.357\%	\$144,870,333	70,939
Residential	620.94	0.397\%	13,393,252	0.132\%	\$92,833,047	1,634,873
Renewables	54.68		5,511,169		\$9,803,332	744
January 1, 2009 - December 31, 2009						
Total Saved	634.62	0.957\%	29,661,512	0.759\%	\$83,273,246	514,714
Business	500.79	1.091\%	20,712,687	0.810\%	\$58,696,839	20,517
Residential	116.89	0.573\%	3,591,004	0.266\%	\$18,660,979	493,780
Renewables	16.93		5,357,821		\$5,915,428	417
January 1, 2010 - December 31, 2010						
Total Saved	590.64	0.859\%	23,640,236	0.633\%	\$75,411,086	432,636
Business	470.99	0.993\%	20,041,916	0.806\%	\$56,396,192	17,672
Residential	119.65	0.562\%	3,598,320	0.288\%	\$19,014,894	414,964
Renewables	0.00	0.000\%	0	0.000\%	\$0	0
January 1, 2011 - December 31, 2011						
Total Saved	440.60	0.642\%	16,707,201	0.421\%	\$56,695,791	194,285
Business	346.71	0.731\%	13,831,959	0.523\%	\$41,183,316	12,860
Residential	93.89	0.442\%	2,875,242	0.220\%	\$15,512,475	181,425
Renewables	0.00	0.000\%	0	0.000\%	\$0	0
January 1, 2012 - December 31, 2012						
Total Saved	649.90	0.944\%	26,170,452	0.641\%	\$86,468,000	91,688
Business	448.37	0.938\%	22,043,941	0.750\%	\$56,848,000	6,429
Residential	201.52	0.959\%	4,126,511	0.360\%	\$29,620,000	85,259
Renewables	0.00	0.000\%	0	0.000\%	\$0	0
July 1, 2001 - December 31, 2012						
Total Saved	4093.48	0.519\%	38,453,464	0.408\%	\$549,354,835	2,939,879
Business	2868.97	0.523\%	145,466,945	0.486\%	\$357,994,680	128,417
Residential	1152.90	0.479\%	27,584,329	0.182\%	\$175,641,395	2,810,301
Renewables	71.61	0.000\%	10,868,990	0.000\%	\$15,718,760	1,161

[^40]
Focus on Energy is

Wisconsin's rate-payer funded energy efficiency and renewable energy program. It works with energy consumersindividuals, business, industry, governmentto evaluate and help fund energy efficiency and renewable energy efforts.

The table shows annual first-year ${ }^{\text {c }}$ energy savings
in Wisconsin due to
Focus on Energy efforts. Gross electricity savings are shown in kilowatt hours (kWhs), while gross natural gas savings are shown in therms. The percent column shows the percent of statewide sales, by sector, represented by the verified gross savings.

The efforts of Focus on Energy undergo regular evaluation by independent contractors who certify programtracked savings. The verified gross kWh, KW and therm savings have been verified by a thirdparty contractor.

Focus on Energy Ranked Energy Savings Measures

The table shows the five energy savings efforts funded by Focus on Energy that reaped the largest energy savings benefit. The measures are different for the business and residential sectors, and are listed according to the saved energy (e.g., kWhs or therms).

As Focus on Energy has grown, energy savings across Wisconsin have increased. In 2012, verified gross savings are about one percent of annual sales of both electricity and natural gas. The work of Focus on Energy helps to reduce overall consumption of fossil-fuel based energy and increase energy efficiency across the state.

2001-2012 ENERGY SAVING ACTIVITIES RANKED BY OVERALL SAVINGS

Electricity	Business Programs		Residential Programs	
	Savings (Million kWh)	Percent Overall Savings	Savings (Million kWh)	Percent Overall Savings
Compact Fluoresent Lights (CFL)	260.56	9.1\%	533.01	46.2\%
ECMa Furnace			113.72	9.9\%
High Bay Fluorescent	226.93	7.9\%		
HotWater ${ }^{\text {b }}$			32.31	2.8\%
Lighting (other than listed) ${ }^{\text {c }}$	599.83	20.9\%	143.86	12.5\%
Otherd	294.28	10.3\%	54.41	4.7\%
T8/75 Fluorescent Lighting	287.78	10.0\%		
Electric Total Verified kWh Savings - All Efforts	2,868.97		1,152.90	

Natural Gas	Business Programs		Residential Programs	
	Savings (Therm)	Percent Overall Savings	Savings (Therm)	Percent Overall Savings
Boiler Equipment/Other Heating	21,420,053	14.7\%	7,052,506	25.6\%
Building Shell			6,294,914	22.8\%
Laundry ${ }^{\text {h }}$			1,160,621	4.2\%
ECM ${ }^{\text {a }}$ Furnace			2,774,651	10.1\%
Energy Recoverye	21,204,151	14.6\%		
HotWater ${ }^{\text {b }}$			4,465,879	16.2\%
HVaC	19,106,962	13.1\%		
Process ${ }^{\text {f }}$	26,133,733	18.0\%		
Other9	11,035,484	7.6\%	2,459,951	10.2\%
Natural Gas Total Verified kWh Savings - All Efforts	145,466,945		27,584,329	

[^41]
Energy Consumption by Major New Household Appliances

1972-2012 AVERAGE kWh PER YEAR

REFRIGERATOR

- - • - • WASHING MACHINE

FREEZER

ROOM A/C

DISHWASHER

Since 1980, energy usage of new household appliances sold in the U.S. has decreased from 45.6 percent (room air conditioners) to
74.1 percent (washing machines), depending upon the appliance.

From 1994 to 2000,
average usage remained essentially unchanged.

However, changes in federal energy efficiency
standards since 2000
have reduced average new appliance energy consumption from
6.1 percent for freezers to 68.3 percent for washing machines.

Appliance data makes it easier to understand residential energy use trends.
a Room air conditioner assumes 600 hours per year.
b Loads per year: washing machine (392), dishwasher (215) . Energy use assumes electric water heater.
c Freezer value estimated.
d U.S. Environmental Protection Agency (EPA) Energy Star efficiency values for average size appliance.
e Refrigerator and freezer standards increased July 1, 2001. Air conditioner standards increased October 1, 2000. Clothes waster standards increased January 1, 2004 and January 1, 2007. Dishwasher standards increased May 14, 1994 and January 1, 2010.
f Best available (most energy efficient) appliance that can be purchased for the average size and type sold today.
Source: Association of Home Appliance Manufacturers (AHAM) Information Center (1972-2012).

Energy Use in State Owned Buildings

Low Income Units Weatherized Through State- and Utility-Supported Programs

The Wisconsin Division of Energy Services, under the Department of Administration, contracts with various agencies throughout the state to provide weatherization ${ }^{\text {a }}$ services to the low-income population. Agencies include community action agencies, housing authorities, tribes, local governments, and other non-profit organizations.

The Weatherization Assistance Program was created under Title IV of the Energy Conservation and Production Act of 1976, and was designed to cut heating bills and save imported oil. See http://www.homeenergyplus.wi.gov/ for local information.

1980-2012

Year ${ }^{\text {d }}$	Department of Administration ${ }^{\text {b }}$	Wisconsin Utilities	Combined Totals
1980	5,811		5,811
1985	7,355	4,139	11,494
1990	9,302	3,384	12,686
1995	6,126	5,455	11,581
1996	4,575	6,651	11,226
1997	4,530	4,626	9,156
1998	3,854	4,848	8,702
1999	3,703	5,700	9,403
$2000{ }^{\text {c }}$	4,246	6,434	10,680
2001	4,867	3,378	8,245
$2002{ }^{\text {e }}$	5,948	1,493	7,441
2003	7,368	0	7,368
2004	8,027	0	8,027
2005	8,721	0	8,721
2006	9,057	0	9,057
2007	10,215	0	10,215
2008	8,645	0	8,645
2009	10,534	0	10,534
2010	15,392	0	15,392
$2011{ }^{1}$	15,211	0	15,211
2012	8,360	0	8,360
Total	254,857	81,227	330,273

a Weatherization is any job in which either the state or a utility, or both, installs envelope efficiency measures, appliance efficiency measures, heating equipment replacement/retrofits, or any combination of these.
b In July 1992, the Low Income Weatherization Assistance Program was transferred from the Department of Health and Family Services to the Department of Administration.
c Wisconsin's Public Benefits Program began in October 2000. This program has transitioned responsibility for weatherizing low-income households from the utilities to the Department of Administration, Division of Energy. The transition was completed at the end of December 2002
d In 1992, the program year was changed to April-March.
e Estimates.
r Revised.
Source: Public Service Commission of Wisconsin, Division of Energy Planning and Programs, unpublished annual data; Wisconsin Department of Health and Family Services, Energy Services Section, unpublished annual data; Department of Administration (DOA), Division of Energy Services, Annual Weatherization Production, report to U.S. DOE for 2012, and unpublished data (2012).

NUMBER OF UNITS weatherized 45.0\%

The number of units weatherized ${ }^{\text {a }}$ in 2012 decreased by 45.0 percent from 2011.

Reported Building Activity Affected by Wisconsin Energy Codes

BUILDINGS CERTIFIED IN 2012 DECREASED	1979-2012						
	Year	$\begin{aligned} & \text { New One } \\ & \text { and Two Family } \\ & \text { Units }{ }^{\text {b }} \end{aligned}$	New Manufactured Dwelling Unitscf,g	Manufactured Homes (HUD Certified) ${ }^{\text {f.h }}$	New \& Altered Publicand Commercial Buildings ${ }^{\text {d }}$	Existing Rental Propertiese	Total
	1979	NA	NA	NA	4,332		4,332
	1980	3,302	906		3,818		8,026
uildings were certified	1985	6,146	1,147		6,380	2,267	15,940
	1990	10,286	1,253		7,378	4,849	23,766
in 2012 as meeting	1995	12,846	1,991		8,434	6,955	30,226
Wisconsin's energy	1996	14,051	2,108		8,088	7,162	31,409
efficiency building	1997	13,390	1,826		7,341	7,488	30,045
codes ${ }^{\text {a }}$, a 5.1 percent	1998	14,662	1,856		6,793	7,616	30,927
decrease from 2011. The	1999	13,282	2,292		7,387	7,270	30,231
number of buildings certified peaked in 2005	2000	14,799	2,085		6,606	7,510	31,000
	2001	14,653	1,926		6,501	6,296	29,376
with 35,192.	2002	15,479	1,933		6,516	6,318	30,246
	2003	18,851	1,999		6,455	5,136	32,441
The codes, developed and enforced by the	2004	18,641	2,141	2,016	6,658	5,221	34,677
	2005	19,762	1,962	1,710	6,810	4,948	35,192
	2006	14,767	1,596	1,124	8,932	4,181	30,600
Wisconsin Department of	20079	13,393	0	698	6,034	3,538	23,663
Safety and Professional	2008	9,004	0	413	4,840	2,671	16,928
Services or local code	2009	6,911	0	207	3,565	2,680	13,363
officials, establish	2010	6,529	0	0	3,596	2,694	12,819
minimum energy	2011	5,099	0	0	3,693	2,541	11,333
standards for new	2012	4,830 ${ }^{\text {e }}$	0	0	3,493	2,434	10,757
renovation and existing rental units.							
The number of New One and Two Family Units for							
to data unavailability.	a Includes Chapter Commerce 22 of the Uniform Dwelling Code; Chapter Commerce 63 of the Commercial Building Code; and Chapter Commerce 67 (State Rental Unit Energy Efficiency Standards).						
	b Based on Uniform Dwelling Code permits issued. Through 2004, communities with a population of fewer than 2,500 could opt out from code enforcement and may not have issued permits. Previous numbers may have included some manufactured dwelling units.						
	c Reporting is required for all manufactured dwelling units. These dwelling units meet state standards and are generally delivered to the dwelling site on a flatbed.						
	d Includes new building and alteration plans submitted and approved by the state under general building code provisions. Some projects are exempt from plan review or were locally approved instead.						
	e Estimate.						
	f Properties certified as meeting code requirements during current year, regardless of year of actual transfer of ownership.						
	g These dwelling units meet federal HUD standards, which are lower than state standards, have a chassis and generally are towed to the dwelling site.						
	NA - Not applicable. Rental Unit Energy Efficiency Code effective January 1,1985 and Uniform Dwelling Code Effective June 1, 1980.						
	Source:	Source: Department of Safety and Professional Services, internal data fies (unpublished).					

Wisconsin Carbon Dioxide Emissions from Energy Use

Average Miles Driven Per Vehicle and Average Miles Per Gallon of Gasoline, Wisconsin and United States

1970-2012

Year	Average Annual Miles Per Passenger Vehicle ${ }^{\text {a/b }}$		Average Passenger Vehicle Miles Per Gallon of Gasoline ${ }^{\text {a,b }}$	
	Wisconsin	U.S.	Wisconsin	U.S.
1970	10,980	9,892	13.6	13.5
1975	10,332	9,309	14.1	14.0
1980	9,782	8,813	16.1	16.0
1985	10,455	9,419	17.6	17.5
1990	11,659	10,504	20.3	20.2
1995	12,435	11,203	21.2	21.1
2000	13,293	11,976	22.0	21.9
2005	13,886	12,510	22.2	22.1
2006	13,858	12,485	22.6	22.5
2007	11,888	10,710	23.0	22.9
2008	11,422	10,290	23.8	23.7
2009	11,534	10,391	23.6	23.5
2010	11,822	10,650	23.4	23.3
2017	12,378	11,150	23.3	23.2
2012 ${ }^{\text {p }}$	12,504	11,265	23.4	23.3

[^42]
CHAPTER 5

United States Energy Use

United States Resource Energy Consumption, by Type of Fuel

U.S. ENERGY CONSUMPTION 2.40
 In 2012, total energy consumption in the United States decreased 2.4 percent.
 2.2\% COAL 11.7\% RENEWABLES 2.7\% NUCLEAR 2.6\%

1970-2012 QUADRILLIONS OF BTU

1970-2012 QUADRILLIONS OF BTU AND PERCENT OF TOTAL

Year	Petroleum		Natural Gas		Coal		Nuclear		Renewable ${ }^{\text {a }}$		Total ${ }^{\text {b }}$
1970 ${ }^{\text {r }}$	29.5	43.5\%	21.8	32.1\%	12.2	18.0\%	0.2	0.4\%	4.1	6.0\%	67.8
$1975{ }^{\text {r }}$	32.7	45.5\%	19.9	27.7\%	12.7	17.6\%	1.9	2.6\%	4.7	6.5\%	72.0
1980 ${ }^{\text {r }}$	34.2	43.8\%	20.2	25.9\%	15.4	19.7\%	2.7	3.5\%	5.4	7.0\%	78.1
$1985{ }^{\text {r }}$	30.9	40.5\%	17.7	23.2\%	17.5	22.9\%	4.1	5.3\%	6.1	8.0\%	76.4
1990r	33.6	39.7\%	19.6	23.2\%	19.2	22.7\%	6.1	7.2\%	6.0	7.1\%	84.5
1995 ${ }^{\text {r }}$	34.4	37.8\%	22.7	24.9\%	20.1	22.1\%	7.1	7.8\%	6.6	7.2\%	91.0
$2000{ }^{\text {r }}$	38.3	38.7\%	23.8	24.1\%	22.6	22.9\%	7.9	8.0\%	6.1	6.2\%	98.8
$2005{ }^{\text {r }}$	40.4	40.3\%	22.6	22.5\%	22.8	22.8\%	8.2	8.1\%	6.2	6.2\%	100.3
$2006{ }^{\text {r }}$	40.0	40.1\%	22.2	22.3\%	22.5	22.6\%	8.2	8.2\%	6.6	6.7\%	99.6
$2007{ }^{\text {r }}$	39.8	39.3\%	23.7	23.4\%	22.8	22.5\%	8.5	8.3\%	6.5	6.5\%	101.3
2008 ${ }^{\text {r }}$	37.3	37.6\%	23.8	24.0\%	22.4	22.6\%	8.4	8.5\%	7.2	7.3\%	99.3
2009 r	35.4	37.4\%	23.4	24.8\%	19.7	20.8\%	8.4	8.8\%	7.6	8.1\%	94.6
$2010{ }^{\text {r }}$	36.0	36.8\%	24.6	25.1\%	20.8	21.2\%	8.4	8.6\%	8.1	8.2\%	98.0
2011^{1}	35.5	36.4\%	24.9	25.5\%	19.7	20.2\%	8.3	8.5\%	9.1	9.3\%	97.5
$2012{ }^{\text {p }}$	34.7	36.5\%	26.0	27.3\%	17.4	18.3\%	8.1	8.5\%	8.8	9.3\%	95.1

a Includes net imports of electricity.
b Totals vary slightly from U.S. resource consumption totals elsewhere in this publication
p Preliminary.
r Revised.
Source: U.S. Department of Energy, Energy Information Administration, Monthly Energy Review, Table 1.3 [DOE/EIA-0035 (2013/04)] (March 2013). http://www.eia.gov/totalenergy/data/monthly/ Annual data in Annual Energy Review, Table 1.3 [DOE/EIA-0384 (2012)] (September 2012). http://www.eia.doe.gov/emeu/aer

United States Resource Energy Consumption, by Economic Sector

1970-2012 QUADRILLIONS OF BTU

1970-2012 QUADRILLIONS OF BTU AND PERCENT OF TOTAL

Year	Residential ${ }^{\text {a }}$		Commercial ${ }^{\text {a }}$		Industrial		Transportation		Total
1970 ${ }^{\text {r }}$	13.8	20.3\%	8.3	12.2\%	29.6	43.7\%	16.1	23.7\%	67.8
$1975{ }^{\text {r }}$	14.8	20.6\%	9.5	13.2\%	29.4	40.9\%	18.2	25.4\%	72.0
1980	15.8	20.2\%	10.6	13.6\%	32.0	41.0\%	19.7	25.2\%	78.1
$1985{ }^{\text {r }}$	16.0	21.0\%	11.5	15.0\%	28.8	37.7\%	20.1	26.3\%	76.4
$1990{ }^{\text {r }}$	16.9	20.1\%	13.3	15.8\%	31.8	37.7\%	22.4	26.5\%	84.5
$1995{ }^{\text {r }}$	18.5	20.3\%	14.7	16.1\%	34.0	37.3\%	23.8	26.2\%	91.0
$2000{ }^{\text {r }}$	20.4	20.7\%	17.2	17.4\%	34.7	35.1\%	26.5	26.9\%	98.8
$2005{ }^{\text {r }}$	21.6	21.6\%	17.9	17.8\%	32.4	32.4\%	28.4	28.3\%	100.3
$2006{ }^{\text {r }}$	20.7	20.8\%	17.7	17.8\%	32.4	32.5\%	28.8	28.9\%	99.6
$2007{ }^{1}$	21.5	21.3\%	18.3	18.0\%	32.4	32.0\%	29.1	28.7\%	101.3
$2008{ }^{\text {r }}$	21.7	21.9\%	18.4	18.5\%	31.4	31.6\%	27.8	28.0\%	99.3
2009 r	21.1	22.3\%	17.9	18.9\%	28.5	30.1\%	27.1	28.7\%	94.6
2010	21.9	22.3\%	18.1	18.4\%	30.5	31.1\%	27.6	28.1\%	98.0
2011	21.4	22.0\%	18.0	18.5\%	30.8	31.6\%	27.2	27.9\%	97.5
2012^{p}	20.2	21.2\%	17.5	18.4\%	30.7	32.3\%	26.7	28.1\%	95.1

During 2012, all sectors saw a decrease in consumption for a total decrease of 2.4 percent.

The industrial sector saw a decrease of 0.5 percent, the commercial sector saw a 2.7 percent decrease, the residential sector dropped by 5.7 percent, and the transportation sector decreased by 1.9 percent from 2011.
a Numbers may not match with previous pages due to independent rounding
p Preliminary.
r Revised.
Source: U.S. Department of Energy, Energy Information Administration, Monthly Energy Review, Table 2.1 [DOE/EIA-0035 (2013/03)] (March 2013). http://www.eia.gov/totalenergy/data/monthly/ Annual data in Annual Energy Review, Table 2.1 [DOE/EIA-0384 (2012)] (September 2012). http://www.eia.doe.gov/emeu/aer

Sources of U.S. Crude Oil and Petroleum Products

Since 1985, U.S. consumption of petroleum products has increased almost 18.0 percent. During this same period, U.S. crude oil production has decreased 27.9 percent (lower 48 production fell 16.9 percent). This resulted in a 109.1 percent increase in imports since 1985, with a corresponding 132.6 percent increase in imports from the Organization of Petroleum Exporting Countries (OPEC).

1970-2012 THOUSANDS OF BARRELS PER DAY

Year	U.S. Petroleum Use	U.S. Field Production ${ }^{\text {a }}$	U.S. Crude Oil Production from 0 il Wells	Natural Gas Plant Liquids from U.S. Natural Gas Wells ${ }^{\text {b }}$	Crude Oil from Wells in Lower 48 States	U.S. Product Exports	U.S. Crude Oil \& Product Imports (Total) ${ }^{c}$	U.S. Crude Oiland Product Imports from OPEC	Imports as a Percent of U.S. Petroleum Use	OPEC Imports as a Percent of U.S. Imports	Imports as a Percent of U.S. Crude Oil Production \& Imports
1970 ${ }^{\circ}$	14,697	11,297	9,637	1,660	9,408	259	3,419	1,294	23.3\%	37.8\%	26.2\%
1975	16,322	10,007	8,375	1,633	8,183	209	6,056	3,601	37.1\%	59.5\%	42.0\%
1980	17,056	10,170	8,597	1,573	6,980	544	6,909	4,300	40.5\%	62.2\%	44.6\%
1985	15,726	10,581	8,971	1,609	7,146	781	5,067	1,830	32.2\%	36.1\%	36.1\%
1990	16,988	8,914	7,355	1,559	5,582	857	8,018	4,296	47.2\%	53.6\%	52.2\%
1995	17,725	8,322	6,560	1,762	5,076	949	8,835	4,002	49.8\%	45.3\%	57.4\%
1996	18,309	8,295	6,465	1,830	5,071	981	9,478	4,211	51.8\%	44.4\%	59.4\%
1997	18,620	8,269	6,452	1,817	5,156	1,003	10,162	4,569	54.6\%	45.0\%	61.2\%
1998	18,917	8,011	6,252	1,759	5,077	945	10,708	4,905	56.6\%	45.8\%	63.1\%
1999	19,519	7,731	5,881	1,850	4,832	940	10,852	4,953	55.6\%	45.6\%	64.9\%
2000	19,701	7,733	5,822	1,911	4,851	1,040	11,459	5,203	58.2\%	45.4\%	66.3\%
2001	19,649	7,670	5,801	1,868	4,839	971	11,871	5,528	60.4\%	46.6\%	67.2\%
2002	19,761	7,624	5,744	1,880	4,759	984	11,530	4,605	58.3\%	39.9\%	66.7\%
2003	20,034	7,363	5,644	1,719	4,670	1,027	12,264	5,162	61.2\%	42.1\%	68.5\%
2004	20,731	7,244	5,435	1,809	4,527	1,048	13,145	5,701	63.4\%	43.4\%	70.7\%
2005	20,802	6,903	5,186	1,717	4,322	1,165	13,714	5,587	65.9\%	40.7\%	72.6\%
2006	20,687	6,827	5,089	1,739	4,348	1,317	13,707	5,517	66.3\%	40.2\%	72.9\%
2007	20,680	6,859	5,077	1,783	4,355	1,433	13,468	5,980	65.1\%	44.4\%	72.6\%
2008	19,498	6,784	5,000	1,784	4,318	1,802	12,915	5,954	66.2\%	46.1\%	72.1\%
2009	18,771	7,262	5,353	1,910	4,708	2,024	11,691	4,776	62.3\%	40.9\%	68.6\%
2010 ${ }^{\circ}$	19,180	7,553	5,479	2,074	4,877	2,353	11,793	4,906	61.5\%	41.6\%	68.3\%
2011	18,949	7,848	5,652	2,216	5,091	2,985	11,504	4,555	60.7\%	39.6\%	67.1\%
$2012^{\text {p }}$	18,555	8,867	6,467	2,399	5,942	3,184	10,596	4,256	57.1\%	40.2\%	62.1\%

a Includes crude oil, natural gas plant liquids and a small amount of other hydrocarbons and alcohol.
b Natural gas liquids recovered from natural gas in gas processing plants and, in some situations, from natural gas field facilities.
c Includes crude oil imports for the Strategic Petroleum Reserve (SPR).
p Preliminary.
r Revised.
Source: U.S. Department of Energy, Energy Information Administration, Monthly Energy Review, Table 3.1, 3.3a and 3.3b [DOE/EIA-0035 (2013/03)] (March 2013). http://www.eia.gov/totalenergy/data/monthly/

2012 U.S. Petroleum Use Domestically Produced and Imported

2012 THOUSANDS OF BARRELS PER DAY

In 2012, U.S. petroleum production ${ }^{\text {a }}$ increased 13.0 percent. OPEC imports decreased 6.6 percent.

U.S. Petroleum Use, Production, Imports and Exports

1970-2012 MILLIONS OF BARRELS PER DAY

World Crude Oil Production

a Prior to 1992, production was for the former U.S.S.R.
b The OPEC countries include the Persian Gulf nations (with the exception of Bahrain) and Algeria, Indonesia, Libya, Nigeria and Venezuela. Ecuador rejoined OPEC in 2007 while Indonesia left OPEC at the end of 2008.
c The Persian Gulf nations are Bahrain, Iran, Iraq, Kuwait, Qatar, Saudi Arabia, the United Arab Emirates, and the Neutral Zone.
d This figure does not include oil sands or other unconventional oil sources.
p Preliminary.
r Revised.
Source: U.S. Department of Energy, Energy Information Administration, Monthly Energy Review, Table 11.1a and 11.1b [DOE/EIA-0035 (2013/03)] (March 2013). http://www.eia.gov/totalenergy/data/monthly/

United States Natural Gas Production, Imports, Consumption and Storage

1970-2012 TRILLIONS OF CUBIC FEET

CONSUMPTION
 4.6\%

In 2012, U.S. natural gas consumption increased 4.6 percent.

PRODUCTION

Domestic natural gas production increased
5.1 percent.

NET IMPORTS
22.6\%

Year	U.S. Dry Natural Gas Production ${ }^{\text {a }}$	Net Imports	Consumption	Natural Gas in Underground Storage - Year End		
				Base Gas ${ }^{\text {b }}$	Working Gas ${ }^{\text {c }}$	Total
1970	21.0	0.8	21.1	2.326	1.678	4.004
1975	19.2	0.9	19.5	3.162	2.212	5.374
1980	19.4	0.9	19.9	3.642	2.655	6.297
1985	16.5	0.9	17.3	3.842	2.607	6.449
1990	17.8	1.4	19.2	3.868	3.068	6.936
1995	18.6	2.7	22.2	4.349	2.153	6.503
2000	19.2	3.5	23.3	4.352	1.719	6.071
$2005{ }^{\text {r }}$	18.1	3.6	22.0	4.200	2.635	6.835
$2010{ }^{\circ}$	21.3	2.6	24.1	4.301	3.111	7.412
$2011{ }^{\text {r }}$	22.9	2.0	24.4	4.302	3.462	7.764
$2012{ }^{\text {p }}$	24.1	1.5	25.5	4.371	3.413	7.784

a Dry Natural Gas Production is natural gas used to heat homes and buildings, and to power industry after the natural gas liquids, such as liquid propane, are removed.
b Base Gas is the volume of gas needed as permanent inventory to maintain adequate underground storage reservoir pressures and deliverability rates during the withdrawal season.
c Working Gas is the gas that can be withdrawn from storage to heat buildings and power industry.
p Preliminary.
r Revised.
Source: U.S. Department of Energy, Energy Information Administration, Monthly Energy Review, Table 4.1 and 4.4 [DOE/EIA-0035 (2013/03)] (March 2013). http://www.eia.gov/totalenergy/data/monthly/. Annual data in Annual Energy Review, Tables 6.1 and 6.6 [DOE/EIA-0384 (2012)] (September 2012). http://www.eia.doe.gov/emeu/aer.

United States Monthly Natural Gas Production, Imports, Consumption and Storage

2012 TRILLIONS OF CUBIC FEET

2012	U.S. Dry Natural Gas Production ${ }^{\text {a }}$	Net Imports	Consumption		Natural Gas in Underground Storage - Month End		
					Base Gas ${ }^{\text {b }}$	Working Gas ${ }^{\text {c }}$	Total ${ }^{\text {d }}$
January	2.044	0.151	2.750		4.307	2.916	7.223
February	1.890	0.140	2.500		4.307	2.455	6.762
March	2.017	0.124	2.124		4.325	2.477	6.802
April	1.963	0.120	1.956		4.329	2.613	6.942
May	2.034	0.126	1.871		4.334	2.890	7.225
June	1.962	0.134	1.867		4.337	3.118	7.456
July	2.036	0.162	2.071		4.339	3.246	7.585
August	2.026	0.142	2.001		4.348	3.409	7.757
September	1.981	0.121	1.800		4.352	3.693	8.045
October	2.059	0.113	1.892		4.365	3.930	8.295
November	1.994	0.092	2.154		4.372	3.799	8.172
December	2.041	0.091	2.472		4.371	3.413	7.784
Totald	24.047	1.516	25.458	Average	4.340	3.163	7.504

a Dry Natural Gas Production is natural gas used to heat homes and buildings, and to power industry after the natural gas liquids, such as liquid propane, are removed.
b Base Gas is the volume of gas needed as permanent inventory to maintain adequate underground storage reservoir pressures and deliverability rates during the withdrawal season.
c Working Gas is the gas that can be withdrawn from storage to heat buildings and power industry.
d Totals may not add due to rounding.
Source: U.S. Department of Energy, Energy Information Administration, Monthly Energy Review, Table 4.1 and 4.4 [DOE/EIA-0035 (2013/03)] (March 2013). http://www.eia.gov/totalenergy/data/monthly/ Annual data in Annual Energy Review, Tables 6.1 and 6.6 [DOE/EIA-0384 (2012)] (September 2012). http://www.eia.doe.gov/emeu/aer.

Natural Gas Withdrawals by Source

1970-2012 MILLIONS OF CUBIC FEET

1970-2012 MILLIONS OF CUBIC FEET AND PERCENT OF TOTAL

Year	Gas Wells		OilWells		Shale Gas Wells		Coalbed Wells		Natural Gas, Gross Withdrawals, AllWells
1970	18,594,658	78.17\%	5,191,795	21.83\%	0	0.00\%	0	0.00\%	23,786,453
1980	17,572,526	80.35\%	4,297,166	18.07\%	0	0.00\%	0	0.00\%	21,869,692
1990	16,053,566	74.59\%	5,469,055	22.99\%	0	0.00\%	0	0.00\%	21,522,621
2000	17,726,056	73.33\%	6,447,820	27.11\%	0	0.00\%	0	0.00\%	24,173,876
2001	18,129,408	74.00\%	6,371,371	26.79\%	0	0.00\%	0	0.00\%	24,500,779
2002	17,794,858	74.33\%	6,146,420	25.84\%	0	0.00\%	0	0.00\%	23,941,278
2003	17,693,053	73.36\%	6,237,176	26.22\%	0	0.00\%	188,749	0.79\%	24,118,978
2004	16,669,139	69.54\%	6,084,431	25.58\%	0	0.00\%	1,216,108	5.11\%	23,969,678
2005	16,246,904	69.26\%	5,984,975	25.16\%	0	0.00\%	1,224,943	5.15\%	23,456,822
2006	16,691,061	70.92\%	5,539,464	23.29\%	0	0.00\%	1,304,493	5.48\%	23,535,018
2007	14,991,891	60.79\%	5,681,871	23.89\%	1,990,145	8.37\%	1,999,748	8.41\%	24,663,655
2008	15,134,644	59.04\%	5,609,425	23.58\%	2,869,960	12.07\%	2,022,228	8.50\%	25,636,257
2009	14,414,287	55.32\%	5,674,120	23.85\%	3,958,315	16.64\%	2,010,171	8.45\%	26,056,893
2010	13,247,498	49.40\%	5,834,703	24.53\%	5,817,122	24.46\%	1,916,762	8.06\%	26,816,085
2011	12,291,070	43.16\%	5,907,919	24.84\%	8,500,983	35.74\%	1,779,055	7.48\%	28,479,027
2012^{p}	12,736,678	43.11\%	4,969,668	20.89\%	10,296,572	43.29\%	1,539,395	6.47\%	29,542,313

[^43]Natural Gas production in the United States was significantly
changed when shale gas resources and coalbed wells became available. Without shale natural gas production due to fracking, and coalbed mines, natural gas withdrawals would have declined to levels not seen since 1965.

In 2012, the percent of total natural gas withdrawals from shale wells increased 21.1 percent over 2011. The availability of natural gas from coalbed wells is gradually decreasing and flattening out, because the available gas is finite, and due to decreased activity in the underground mining industry.

The Gross Withdrawals shows all of the sources of natural gas production.

Natural Gas Production

United States Coal Production, Net Exports, Consumption and Sector Usage

1970-2012 MILLIONS OF TONS

Year	Coal Production	Net Exports	Consumption	Coal Use by Sector		
				Res. \& Com. ${ }^{\text {a }}$	Industrial	Electric Power
1970 ${ }^{\text {r }}$	612.7	71.7	523.2	16.1	186.6	320.2
1975 ${ }^{\text {r }}$	654.6	65.4	562.6	9.4	147.2	406.0
$1980{ }^{\text {r }}$	829.7	90.5	702.7	6.5	127.0	569.3
1985 ${ }^{\text {r }}$	883.6	90.7	818.0	7.8	116.4	693.8
$1990{ }^{\circ}$	1,029.1	103.1	904.5	6.7	115.2	782.6
$1995{ }^{\text {r }}$	1,033.0	79.1	962.1	5.8	106.1	850.2
$2000{ }^{\text {r }}$	1,073.6	46.0	1,084.1	4.1	94.1	985.8
$2005{ }^{\text {r }}$	1,131.5	19.5	1,126.0	4.7	83.8	1,037.5
$2006{ }^{\text {r }}$	1,162.7	13.4	1,112.3	3.2	82.4	1,026.6
$2007{ }^{1}$	1,146.6	22.8	1,128.0	3.5	79.3	1,045.1
$2008{ }^{\text {r }}$	1,171.8	47.3	1,120.5	3.5	76.5	1,040.6
$2009{ }^{\text {r }}$	1,074.9	36.5	997.5	3.2	60.6	933.6
$2010{ }^{\text {r }}$	1,084.4	62.4	1,048.5	3.1	70.4	975.1
2011	1,095.6	94.2	1,002.9	2.8	67.7	932.5
2012 ${ }^{\text {p }}$	1,016.4	116.6	890.5	2.0	63.7	824.8

> DOMESTIC PRODUCTION EXCEEDS DEMAND

Unlike petroleum or natural gas, domestic production of coal exceeds demand, and the U.S. is a net exporter of coal.

IN THE U.S. 92.6\% OF COAL GENERATES ELECTRIC POWER

Of the coal consumed in the United States, 92.6 percent is used in the electric sector which accounts for 37.4 percent of all electricity generation. In Wisconsin, coal accounts for 74.0 percent of all electricity generation. The industrial sector uses 7.2 percent, with the residential and commercial sectors combined using 0.22 percent of total domestic consumption.

[^44]
United States Per Capita Resource Energy Consumption, by Type of Fuel

2012 MILLIONS OF BTU AND PERCENT OF TOTAL

1970-2012 MILLIONS OF BTU AND PERCENT OF TOTAL

Year	Petroleum ${ }^{\text {a }}$		Natural Gas		Coal		Nuclear		Renewables ${ }^{\text {b }}$		Total
$1970{ }^{\text {r }}$	126.1	40.3\%	106.3	33.9\%	59.8	19.1\%	1.2	0.4\%	19.9	6.3\%	313.2
1975	133.2	42.3\%	92.4	29.4\%	58.6	18.6\%	8.8	2.8\%	21.7	6.9\%	314.7
$1980{ }^{\text {r }}$	128.0	39.9\%	89.1	27.8\%	67.9	21.2\%	12.1	3.8\%	23.9	7.4\%	320.9
$1985{ }^{\text {r }}$	112.8	37.2\%	74.4	24.5\%	73.5	24.2\%	17.1	5.6\%	25.6	8.4\%	303.4
$1990{ }^{\text {r }}$	113.9	35.8\%	78.5	24.7\%	76.8	24.2\%	24.5	7.7\%	24.2	7.6\%	317.9
$1995{ }^{\text {r }}$	109.9	34.2\%	85.1	26.5\%	75.4	23.4\%	26.6	8.3\%	24.6	7.7\%	321.7
$2000{ }^{\text {r }}$	116.0	35.2\%	84.4	25.6\%	80.0	24.2\%	27.9	8.4\%	21.6	6.6\%	330.0
$2001{ }^{1}$	114.3	36.0\%	79.9	25.2\%	76.9	24.2\%	28.2	8.9\%	18.1	5.7\%	317.4
$2002{ }^{2}$	113.3	35.5\%	81.7	25.6\%	76.2	23.8\%	28.3	8.9\%	19.9	6.2\%	319.4
$2003{ }^{\text {r }}$	113.8	35.9\%	78.7	24.8\%	76.9	24.2\%	27.4	8.6\%	20.5	6.5\%	317.4
$2004{ }^{\text {r }}$	116.4	36.4\%	78.3	24.4\%	76.7	24.0\%	28.1	8.8\%	20.8	6.5\%	320.3
$2005{ }^{\text {r }}$	116.1	36.5\%	76.4	24.0\%	77.1	24.2\%	27.6	8.7\%	21.1	6.6\%	318.3
$2006{ }^{\text {r }}$	113.4	36.2\%	74.5	23.8\%	75.2	24.0\%	27.5	8.8\%	22.3	7.1\%	312.9
$2007{ }^{\text {r }}$	112.4	35.6\%	78.6	24.8\%	75.5	23.9\%	28.1	8.9\%	21.7	6.9\%	316.3
$2008{ }^{\text {r }}$	105.3	34.1\%	78.4	25.4\%	73.6	23.8\%	27.7	9.0\%	23.7	7.7\%	308.7
2009 r	100.1	34.2\%	76.3	26.1\%	64.2	21.9\%	27.2	9.3\%	24.9	8.5\%	292.8
$2010{ }^{\text {r }}$	100.9	33.5\%	79.4	26.4\%	67.2	22.3\%	27.3	9.1\%	26.1	8.7\%	301.0
$2011{ }^{1}$	99.0	33.3\%	79.8	26.8\%	63.1	21.2\%	26.5	8.9\%	29.1	9.8\%	297.6
2012 ${ }^{\text {P }}$	96.1	33.4\%	82.8	28.8\%	55.3	19.2\%	25.6	8.9\%	28.1	9.8\%	288.0

[^45]
Wisconsin Per Capita Resource Energy Consumption as Percent of United States, by Type of Fuel

2012 PER CAPITA RESOURCE ENERGY CONSUMPTION - MILLIONS OF BTU

1970-2012 WISCONSIN PER CAPITA RESOURCE ENERGY CONSUMPTION AS A PERCENT OF U.S.

Year	Petroleum ${ }^{\text {a }}$	Natural Gas	Coal	Nuclear	Renewables ${ }^{\text {b }}$	Total
1970	82.2	69.7	134.5	32.5	31.1	82.5
1975	78.1	87.3	98.0	276.8	29.7	85.3
1980	75.4	82.1	101.6	188.7	43.5	84.3
1985	77.7	86.2	107.4	145.9	42.7	87.8
1990	78.5	79.8	109.5	101.3	42.5	90.9
1995	83.1	87.8	120.5	87.4	39.7	97.6
2000	79.8	86.9	121.0	82.8	47.7	95.3
2005	76.8	91.6	123.5	53.1	53.3	96.3
2006	77.2	90.5	122.0	85.4	52.1	93.0
2007	78.0	84.9	120.9	87.9	59.5	95.9
2008	79.5	88.0	129.5	83.5	59.8	97.7
2009	78.9	86.9	132.7	88.4	57.0	96.7
2010	78.7	83.5	136.6	92.4	57.3	94.9
2011	79.2	86.2	136.8	82.7	53.8	95.4
2012 ${ }^{\text {p }}$	81.8	91.3	131.4	72.4	55.8	95.8

IN 2012 WISCONSIN USED 95.8\% AS MUCH ENERGY PER CAPITA AS THE NATIONAL AVERAGE

In 2012, Wisconsin used 95.8 percent as much energy per capita as the national average. Wisconsin used significantly more coal than the national average because of the state's high use of electricity generated from coal. Wisconsin used less petroleum, natural gas, renewable and nuclear energy per capita than the national average.

[^46]
U.S. Per Capita Resource Energy Consumption, by State

U.S. Resource Energy Consumption, by State

From 2009 until 2011, when non-energy uses of petroleum are
included (such as
road oil, asphalt and
lubricants), Wisconsin
used 1.8 percent of total energy consumed in the

United States ${ }^{\text {a }}$.

[^47]
Primary Energy Intensity, by Country and Region

WORLD WIDE AVERAGE 9.8 kBtu/\$GDP

Abstract

Energy intensity demonstrates the efficiency with which a country uses the energy it consumes, relative to its economic activity, the country's Gross Domestic

Product (GDP).

The chart and graph below show energy intensity as a factor of Btu per 2005 U.S.

Dollars. The higher the intensity, the less efficiently energy is used, while lower intensity numbers show efficient energy consumption relative to other nations. Another way to describe energy intensity is that it measures how much energy a country requires to produce a dollar of GDP.

The world wide average is $9.8 \mathrm{kBtu} / \$ G D P$.

The United States and
Wisconsin are more
efficient than the world at 7.3 and $7.4 \mathrm{kBtu} / \$ G D P$,
respectively.

2006-2011 BTU PER 2005 U.S. DOLLARS

	2006	2007	2008	2009	2010	2011
State						
Wisconsin	7,463	7,794	8,063	7,543	7,516	7,400
Country						
Canada	11,850	11,769	11,289	11,225	10,796	10,962
United States	7,688	7,670	7,543	7,412	7,505	7,329
Brazil	10,582	10,416	10,109	10,262	10,346	10,312
France	5,198	5,047	5,057	4,936	5,001	4,816
Germany	5,121	4,799	4,818	4,768	4,744	4,325
Italy	4,415	4,372	4,320	4,275	4,380	4,228
United Kingdom	4,159	3,950	3,880	3,838	3,827	3,624
Russia	33,506	31,990	31,393	31,821	32,390	34,797
China	29,205	27,326	26,685	27,144	26,274	26,131
India	19,270	18,725	18,878	18,619	17,513	17,581
Japan	4,922	4,849	4,660	4,702	4,752	4,554
Region						
North America	8,039	8,017	7,850	7,742	7,788	7,667
Central and South America	11,735	11,190	11,116	10,990	11,053	11,000
Europe	5,583	5,431	5,350	5,289	5,347	5,250
Eurasia	37,078	35,207	34,333	33,142	33,679	34,000
Middle East	19,543	18,564	19,258	20,116	20,203	20,100
Africa	13,694	13,274	13,519	13,109	12,843	12,500
Asia and Oceania	13,483	13,310	13,412	14,188	13,996	14,000
World	9,860	9,734	9,756	9,911	9,992	9,800

Source: U.S. Department of Energy, Energy Information Administration, International Energy Statistics, (2012)
http://www.eia.gov/cfapps/ipdbproject/EDIndex3.cfm.

Primary Energy Usage and GDP, by Country and Region

2011 QUADRILLION BTUs AND BILLIONS OF 2005 U.S. DOLLARS

	2011		Gross Domestic Product ${ }^{\text {a }}$		Primary Energy Intensity
	Quadrillion Btu	Percent of Wold Total	Billions of 2005 U.S. Dollars	Percent of Wold Total	Btu per 2005 U.S. Dollars
Country					
Brazil	11.66	2.3\%	1,131	2.2\%	10,312
Canada	13.50	2.7\%	1,231	2.4\%	10,962
China	109.62	21.9\%	4,195	8.2\%	26,131
France	10.78	2.2\%	2,238	4.4\%	4,816
Germany	13.08	2.6\%	3,024	5.9\%	4,325
India	23.61	4.7\%	1,343	2.6\%	17,581
Italy	7.41	1.5\%	1,753	3.4\%	4,228
Japan	20.86	4.2\%	4,581	9.0\%	4,554
Russia	32.77	6.6\%	942	1.8\%	34,797
United Kingdom	8.52	1.7\%	2,351	4.6\%	3,624
United States	97.47	19.5\%	13,299	26.1\%	7,329
Region					
Africa	15.00	3.0\%	1,200	2.4\%	12,500
Asia and Oceania	200.00	40.0\%	14,286	28.0\%	14,000
Central and South America	25.00	5.0\%	2,273	4.5\%	11,000
Eurasia	40.00	8.0\%	1,176	2.3\%	34,000
Europe	85.00	17.0\%	16,190	31.7\%	5,250
Middle East	30.00	6.0\%	1,493	2.9\%	20,100
North America	118.79	23.8\%	15,493	30.4\%	7,667
World	500.00		51,020		9,800

Primary Resource energy use varies widely from country to country. Industrialized countries such as those in North America and Western Europe each use about 2 percent of the annual worldwide primary energy consumption, while the U.S. uses significantly more at 19.5 percent.

Developing nations such as Russia (6.6 percent),

China (21.9 percent) and India (4.7 percent) use a significantly larger share of the annual, worldwide primary energy with a smaller Gross Domestic Product.

Although the U.S. has a much larger economy, uses more energy and is more developed in terms of economic activity,
the countries of Western Europe use energy more efficiently to drive their economy.

[^48]CHAPTER 6 Wisconsin and U.S. Prices and Average Costs of Fuels

Wisconsin Energy Prices

1970-2012 DISTILLATE PRICES (2012 DOLLARS)

1970-2012 NATURAL GAS PRICES (2012 DOLLARS)

1970-2012 ELECTRICITY PRICES (2012 DOLLARS)

COMMERCIAL

INDUSTRIAL

Historical prices can be presented in two ways - the current or nominal price, which was gathered during that year. The real or constant price which uses Gross Domestic Product price deflator for inflation. In other words, actual prices are adjusted to be comparable to 2012 prices, in "real" terms, with the effects of inflation removed. All prices are reported in current or nominal terms unless noted explicitly as being real, constant or adjusted.

Wisconsin Residential Energy Prices, by Type of Fuel

Wisconsin Residential Energy Prices, by Type of Fuel, Winter Heating Season

2012-2013 DOLLARS PER MILLION BTU

2012-2013 DOLLARS PER GALLON AND DOLLARS PER MILLION BTU

$\begin{aligned} & \text { Date } \\ & \text { 2012-2013 } \end{aligned}$	Heating Oila		Propane ${ }^{\text {b }}$		Natural Gas
	\$/Gallon	\$/MMBtu	\$/Gallon	\$/MMBtu	\$/MMBtu
Oct. 2, 2012	3.71	26.78	1.44	15.06	6.05
Oct. 15, 2012	3.83	27.64	1.45	15.15	6.05
Oct. 29, 2012	3.69	26.59	1.48	15.48	6.05
Nov. 12, 2012	3.60	25.99	1.49	15.58	7.77
Nov. 26, 2012	3.64	26.26	1.49	15.60	7.77
Dec. 10, 2012	3.60	25.94	1.48	15.54	7.85
Dec. 26, 2012	3.55	25.58	1.48	15.49	7.85
Jan. 7, 2013	3.51	25.34	1.49	15.62	7.28
Jan. 22, 2013	3.52	25.39	1.49	15.66	7.28
Feb. 4, 2013	3.68	26.50	1.51	15.85	7.32
Feb. 18, 2013	3.80	27.41	1.51	15.83	7.32
Mar. 4, 2013	3.69	26.58	1.51	15.86	7.20
Average Price for the Heating Season	3.65	26.33	1.49	15.58	7.25

[^49]For the 2012-2013 winter heating season, propane prices peaked in January 2013, heating oil peaked in October 2012, while natural gas prices peaked in December 2012.

Natural gas pricing data presented here are different from other data in this book due to difference in data source and duration of the average. For example, these data cover only the heating season (October-March).

Heating oil and LP data are sourced from a weekly survey of federally-identified fuel wholesalers and retailers, and natural gas data is from Wisconsin's Class A utilities. Data elsewhere in the book are derived from Public Service Commission utility data and the federal Energy Information Administration.

Wisconsin Commercial Energy Prices, by Type of Fuel

Wisconsin Industrial Energy Prices, by Type of Fuel

1970-2012 DOLLARS PER MILLION BTU (2012 DOLLARS)

1970-2012 DOLLARS PER MILLION BTU

Year	Current Dollars					2012 Dollars ${ }^{\text {a }}$				
	Distillate Oilc	Residual Oilb,c	Natural Gas	Coal	Electricity	Distillate Oik	$\begin{gathered} \text { Residual } \\ 0 i^{\mathrm{b}}, \mathrm{c} \end{gathered}$	Natural Gas	Coal	Electricity
$1970{ }^{\text {r }}$	0.76	0.50	0.54	0.65	4.23	3.60	2.37	2.56	3.08	20.06
1975	2.23	2.06	1.03	1.55	6.63	7.66	7.08	3.54	5.32	22.77
$1980{ }^{\text {r }}$	5.18	3.31	3.12	1.55	10.10	12.51	7.99	7.53	3.74	24.39
$1981{ }^{1}$	7.30	4.17	3.74	2.14	11.50	16.12	9.21	8.26	4.72	25.39
$1982{ }^{\text {r }}$	6.92	4.10	4.36	2.21	13.08	14.40	8.53	9.07	4.60	27.21
$1985{ }^{\text {r }}$	6.05	4.21	4.44	2.11	12.64	11.33	7.88	8.31	3.95	23.67
$1990{ }^{\text {r }}$	5.39	2.29	3.37	1.80	11.69	8.61	3.66	5.38	2.87	18.67
$1995{ }^{\text {r }}$	4.46	2.35	2.93	1.66	11.09	6.31	3.32	4.14	2.35	15.68
$2000{ }^{\text {r }}$	7.39	4.34	5.42	1.66	11.85	9.61	5.64	7.05	2.16	15.41
$2005{ }^{\text {r }}$	13.92	6.35	9.78	2.56	15.80	16.07	7.33	11.28	2.95	18.23
$2010{ }^{\text {r }}$	17.20	11.00	7.49	3.57	20.07	17.89	11.43	7.79	3.71	20.86
$2011{ }^{\text {r }}$	24.01	14.70	6.95	3.71	21.47	24.44	14.96	7.07	3.78	21.85
2012 ${ }^{\text {p }}$	24.73	15.70	5.70	4.02	21.53	24.73	15.70	5.70	4.02	21.53

a 2012 dollar values computed with Gross National Product Implicit Price Deflator. See the last page in this chapter with the table on price indices.
b Beginning in 2009, the residual fuel oil price is for the Petroleum Administration Defense District (PADD) II. The PADD II includes 15 midwestern states including Wisconsin. State-specific pricing data for RFO is withheld or not available according to publishing policies used by the Energy Information Administration (EIA).
c Beginning in 2011, the distillate oil price is estimated based on the refiner retail price in Wisconsin. The price for residual oil is estimated based on refiner retail prices for the United States. The reports previously used by the Wisconsin SEO were suspended as part of EIA's response to the U.S. budget sequester.
p Preliminary estimates.
r Revised.
Source: U.S. Department of Energy, "State Btu Unit Price Data Base", unpublished (May 1981); State Energy Consumption, Price and Expenditure Report 1960-2008 http://www.eia.doe.gov/emeu/states/_seds.html, (June 2010); Petroleum Marketing Monthly (January 1985-March 2008); Quarterly Coal Report, Table 27 [DOE/EIA-0121(2009/4Q)] (April 2010), http://www.eia.doe.gov/cneaf/coal/quarterly/qcr.pdf; Petroleum Marketing Annual (2007-2009) [DOE/EIA-0487 (2009)] (August 2010), Tables 35 and 38; Oil Daily/Daily Oil and Gas Price Review, by subscription (2008-2009); Wisconsin No. 2 Distillate Retail Sales by Refiners (2011); U.S. Residual Fuel Oil Sales by Refiners (2011); U.S. Department of Energy, Energy Information Administration, State Energy Data System, Wisconsin prices (1970-2012), http://www.eia.gov/state/seds/seds-data-complete.cfm.

REAL PRICE
IN 2012 DOLLARS
COAL
6.5\%

DISTILLATE OIL 1.2\% residual oil 4.9\%

In 2012, the real prices of coal, distillate and residual oils increased, while all other fuels decreased. Coal increased by 6.5 percent, distillate oil by 1.2 percent and residual oil by 4.9 percent.

REAL PRICE IN 2012 DOLLARS
NATURAL GAS
19.4\%

ELECTRICITY 1.5\%

Natural gas dropped by
19.4 percent and electricity by 1.5 percent from 2011 .

The real price of coal and electricity are 14.9 and 20.9 percent lower than their respective 1981 and 1982 price peaks, adjusted for inflation.

Prices for electricity and natural gas have been historically revised.

Wisconsin Motor Gasoline and Diesel Fuel Retail Prices

[^50]
Wisconsin Alternative Vehicle Fuels Retail Prices

The gray bars on this graph show the prices of conventional gasoline and diesel, and the state and federal gasoline taxes, as a point of reference to the prices of alternative vehicle fuels.

2000-2012 DOLLARS PER GALLON AND PER GASOLINE GALLON EQUIVALENT

Year	Current Dollars						2012 Dollars ${ }^{\text {c }}$					
	B20	E85	LPG	CNG	$\begin{aligned} & \text { CNG } \\ & \text { Tax } \end{aligned}$	$\begin{aligned} & \text { LPG } \\ & \text { Tax } \end{aligned}$	B20	E85	LPG	CNG	$\begin{aligned} & \text { CNG } \\ & \text { Tax } \end{aligned}$	$\begin{aligned} & \text { LPG } \\ & \text { Tax } \end{aligned}$
2000		1.48	1.27	0.85	0.25	0.23		1.92	1.65	1.10	0.32	0.29
2001	1.47	1.38	1.09	1.20	0.25	0.23	1.87	1.76	1.38	1.53	0.31	0.29
2002	1.34	1.28	1.24	1.01	0.25	0.23	1.67	1.60	1.56	1.26	0.31	0.28
2003	1.52	1.43	1.63	1.08	0.25	0.23	1.86	1.75	2.00	1.32	0.30	0.28
2004	1.82	1.71	1.81	1.04	0.25	0.23	2.17	2.04	2.16	1.24	0.29	0.27
2005	2.51	2.10	2.24	1.40	0.25	0.23	2.90	2.42	2.58	1.61	0.29	0.26
2006	2.64	2.16	2.16	1.23	0.25	0.23	2.95	2.41	2.41	1.37	0.28	0.25
2007	2.64	2.33	2.54	1.53	0.25	0.23	2.87	2.53	2.76	1.66	0.27	0.25
2008	3.94	2.80	3.07	1.83	0.25	0.23	4.18	2.97	3.26	1.94	0.26	0.24
2009	2.46	1.97	2.78	1.73	0.25	0.23	2.59	2.08	2.93	1.83	0.26	0.24
2010	2.93	2.34	2.91	1.73	0.25	0.23	3.04	2.43	3.03	1.80	0.26	0.23
2011	3.78	3.06	2.88	1.70	0.25	0.23	3.85	3.11	2.93	1.73	0.25	0.23
2012	3.84	3.30	2.71	1.89	0.25	0.23	3.84	3.30	2.71	1.89	0.25	0.23

[^51]Alternative vehicle fuels
are becoming more prevalent in Wisconsin.

Since 2000, Wisconsin has increased refueling locations for alternative fuels and encouraged the use of cleaner burning and biologically sources fuels - often from Wisconsin's farms. B20 is a blend of biodiesel (20 percent) and conventional diesel fuel (80 percent). Biodiesel is produced from domestic
feedstocks such as vegetable oil, animal fat and soybeans.

E85 is a blend of ethanol (85 percent) and conventional unleaded gasoline (15 percent). Ethanol is produced from biological feedstocks such as corn. Most unleaded gasoline in Wisconsin is E10, a blend of ethanol and gasoline that can be burned in any vehicle engine.

LPG, also known as propane, and compressed natural gas (CNG) are also used in on-road vehicles in Wisconsin.

Wisconsin Gasoline Prices Relative to the United States and the Midwest

> IN 2012 WISCONSIN GAS PRICES WERE 1.2\% HIGHER THAN THE MIDWEST AVERAGE, AND 1.0\% HIGHER THAN THE U.S. NATIONAL AVERAGE

Since 2000, the retail price of conventional gasoline in Wisconsin averages 1.1 percent higher than the national average, and 1.4 percent higher than the Midwest ${ }^{\text {a }}$.

The difference in cost between Wisconsin and the U.S., and Wisconsin and the Midwest, is highly dependent on the variable cost of gasoline. These price averages do not include local or national taxes.

This graph shows the relationship of Wisconsin gasoline prices to the U.S. average gasoline prices, and also to gasoline prices in the Midwest. A value above 1 means that the Wisconsin price is more than the U.S. or the Midwest average price, and value below 1 means that the Wisconsin price is less than the U.S. or Midwest average price. A value of 1 means that the WI price is equal to the national or Midwest average price. These data are presented in a 12-point moving average.

1994-2012 RATIO OF WI TO U.S., AND TO MIDWEST, CONVENTIONAL RETAIL GAS PRICES

1994-2012 RETAIL SALES OF CONVENTIONAL GASOLINE, DOLLARS PER GALLON ${ }^{b}$

Year	U.S.	Midwest $^{\text {a }}$	Wisconsin
1994	0.722	0.709	0.715
1995	0.748	0.729	0.740
2000	1.066	1.072	1.088
2001	0.992	1.009	1.039
2002	0.922	0.926	0.943
2003	1.107	1.103	1.124
2004	1.389	1.374	1.395
2005	1.803	1.779	1.799
2006	2.083	2.058	2.096
2007	2.310	2.317	2.349
2008	2.746	2.711	2.716
2009	1.858	1.846	1.865
2010	2.287	2.270	2.293
2011	3.015	3.019	3.039
2012	3.099	3.093	3.131

[^52]
Wisconsin Electric Utility Average Costs of Fuel

1970-2012 DOLLARS PER MILLION BTU (2012 DOLLARS)

REAL COST IN 2012 dollars COAL
 6.9\% natural gas 34.8\% 3.2\%

1970-2012 DOLLARS PER MILLION BTU

Year	Current Dollars			2012 Dollars ${ }^{\text {a }}$		
	Oil	Natural Gas	Coal	Oil	Natural Gas	Coal
1970 ${ }^{\text {r }}$	0.67	0.42	0.39	3.18	1.99	1.85
1975 ${ }^{\text {r }}$	2.30	0.82	0.86	7.90	2.82	2.95
1980	5.58	2.94	1.42	13.47	7.10	3.43
1982	6.83	4.18	1.72	14.21	8.70	3.58
1985 ${ }^{\text {r }}$	5.48	4.11	1.71	10.26	7.70	3.20
$1990{ }^{\text {r }}$	5.26	2.93	1.36	8.40	4.68	2.17
$1995{ }^{\text {r }}$	3.85	2.21	1.14	5.44	3.12	1.61
$2000{ }^{\text {r }}$	6.27	4.44	1.02	8.15	5.77	1.33
$2005{ }^{\text {r }}$	12.19	8.68	1.26	14.07	10.02	1.45
$2006{ }^{\text {r }}$	14.98	7.27	1.47	16.74	8.13	1.64
$2007{ }^{1}$	16.52	7.43	1.67	17.94	8.07	1.81
$2008{ }^{\text {r }}$	21.20	9.11	1.94	22.53	9.68	2.06
2009 r	12.65	4.76	1.99	13.33	5.01	2.10
2010	16.53	5.37	2.11	17.18	5.58	2.19
2011 ${ }^{1}$	22.57	4.85	2.50	22.97	4.94	2.54
$2012{ }^{\text {p }}$	22.25	3.22	2.37	22.25	3.22	2.37

[^53]In 2012, the real cost (2012 dollars) of fuels used to generate electricity all decreased.

Coal decreased 6.9 percent, natural gas 34.8 percent, and oil by 3.2 percent.

Adjusted for inflation, coal prices are 33.8 percent down from their peak in 1982. Natural gas prices are 67.9 percent below their 2005 peak.

Oil prices peaked in 2011. Coal remains the lowest cost electric utility fossil fuel.

The prices in this table have been historically revised to align with federal Energy Information Administration data.

Wisconsin Electric Utility Coal Costs and Sulfur Content of Coal, by Utility Plant

Wisconsin utility coal has
70.3 percent less sulfur and costs 2.9 percent more, in cents per MMBtu, than the average coal used in the United States.

Wisconsin utilities have
been very successful in meeting and maintaining
the 1993 goals of Wisconsin's acid rain control law through increased use of low sulfur coal.

In 2012, the average Wisconsin coal cost, in cents per million Btu, increased . 06 percent, while sulphur content decreased 16.7 percent.

```
2012
```

Plant	Consumption Thousand Tons	Average Btu Per Pound	Average Cents Per Million Btu	Average Dollars PerTon	Average Percent Sulfur ${ }^{\text {a }}$
Dairyland Power Cooperative	1,847	8,668	285.4	49.47	0.57\%
Alma - Madgett	1,251	8,762	273.6	47.94	0.53\%
Genoa 3	596	8,469	311.0	52.67	0.65\%
Manitowoc Public Utilities	48	13,178	229.4	60.46	1.40\%
Manitowoc	48	13,178	229.4	60.46	1.40\%
Northern States Power Co.	3	8,531	432.4	73.78	0.25\%
Bay Front	3	8,531	432.4	73.78	0.25\%
Wisconsin Electric Power Co.	8,049	9,055	260.1	47.11	0.42\%
Elm Road	627	12,986	382.6	99.38	2.08\%
Oak Creek	2,298	8,757	242.3	42.44	0.21\%
Pleasant Prairie	3,534	8,361	224.7	37.57	0.31\%
Presque Isle	1,257	9,018	249.3	44.97	0.26\%
Valley	332	11,201	403.1	90.30	0.43\%
Wisconsin Power and Light Co.	7,151	8,611	205.7	35.42	0.26\%
Columbia	4,528	8,604	170.7	29.37	0.26\%
Edgewater	2,170	8,527	263.2	44.88	0.26\%
Nelson Dewey	453	9,082	278.7	50.63	0.33\%
Wisconsin Public Services Corp.	3,068	8,717	300.3	52.35	0.26\%
Pulliam	376	8,587	355.5	61.05	0.25\%
Weston	2,692	8,735	292.7	51.14	0.26\%
Wisconsin	20,165	8,820	249.5	44.02	0.35\%
United States	609,445	9,795	242.5	47.51	1.18\%

a Percent by weight.
Source: U.S. Department of Energy, EIA, Electric Power Monthly, [DOE/EIA-0226(2014/02)] (February 2014), Tables 2.5 and 4.2, http://www.eia.doe.gov/cneaf/electricity/epm/epm_sum.html; Annual reports of Wisconsin electric generating utilities (2012), http://psc.wi.gov/apps/ann|report/default.aspx; Dairyland Power Cooperative, Rural Utility Service (RUS) report for 2012 (April 2013).

Wisconsin Natural Gas Prices, by Economic Sector

```
1970-2012 DOLLARS PER MILLION BTU (2012 DOLLARS)
```


1970-2012 DOLLARS PER MILLION BTU

Year	Current Dollars					2012 Dollars ${ }^{\text {a }}$				
	Residential	Commercial	Industrial	Utility	Average	Residential	Commercial	Industrial	Utility	Average
$1970{ }^{\text {r }}$	1.22	0.82	0.54	0.42	0.79	5.78	3.89	2.56	1.99	3.75
1975	1.71	1.29	1.03	0.82	1.30	5.87	4.43	3.54	2.82	4.47
$1980{ }^{\text {r }}$	3.81	3.43	3.12	2.94	3.43	9.20	8.28	7.53	7.10	8.28
$1985{ }^{\text {r }}$	6.41	5.14	4.44	4.11	5.37	12.00	9.62	8.31	7.70	10.05
$1990{ }^{\text {r }}$	5.70	4.72	3.37	2.93	4.55	9.10	7.54	5.38	4.68	7.27
$1995{ }^{\text {r }}$	5.76	4.45	2.93	2.21	4.30	8.14	6.29	4.14	3.12	6.08
$2000{ }^{\text {r }}$	7.48	6.26	5.42	4.44	6.27	9.73	8.14	7.05	5.77	8.15
$2005{ }^{\text {r }}$	11.77	10.24	9.78	8.68	10.37	13.58	11.82	11.28	10.02	11.97
$2006{ }^{\text {r }}$	12.04	10.16	9.36	7.27	10.19	13.46	11.36	10.46	8.13	11.39
$2007{ }^{\text {r }}$	11.86	10.22	9.49	7.43	10.17	12.88	11.10	10.31	8.07	11.05
$2008{ }^{\text {r }}$	12.63	11.03	10.42	9.11	11.22	13.42	11.72	11.07	9.68	11.92
2009 r	10.61	8.83	7.71	4.76	8.69	11.18	9.30	8.12	5.01	9.15
$2010{ }^{\text {r }}$	10.24	8.45	7.49	5.37	8.40	10.65	8.78	7.79	5.58	8.73
$2011{ }^{1}$	9.63	7.92	6.95	4.85	7.82	9.80	8.06	7.07	4.94	7.96
2012 ${ }^{\text {p }}$	9.09	7.20	5.70	3.22	6.42	9.09	7.20	5.70	3.22	6.42

```
IN 2012 NATURAL GAS PRICES DECREASED IN ALL SECTORS
```

In 2012, natural gas prices decreased in all sectors. On average, the price decreased 19.4 percent.

[^54]
Wisconsin Natural Gas Prices, by Public Service Commission of Wisconsin Sector

AVERAGE
PRICE OF
NATURAL GAS
The prices of utility gas
for all customer classes
decreased in 2012. The
average price of natural
gas in 2012 decreased
by 9.0 percent from 2011.
Prices for commercial
and industrial gas do
not include the price
of transport gas but
represent the cost of
gas purchased directly
from the utility.

1970-2012 DOLLARS PER MILLION BTU

Year	Residential		Commercial and Industrial			Average
	General	Space Heating	Firm	Interruptible	Space Heating	
1970	1.55	1.18	0.73	0.49	0.92	0.81
1975	2.13	1.68	1.16	1.00	1.40	1.31
1980	4.34	3.77	3.22	3.07	3.49	3.44
$1985{ }^{\text {r }}$	7.53	6.36	4.98	4.23	5.28	5.36
1990'	6.78	5.67	4.28	3.00	4.49	4.85
$1995{ }^{1}$	7.01	5.77	4.14	2.47	4.63	4.72
$1996{ }^{\text {r }}$	7.00	5.95	4.26	3.30	4.75	5.08
1997	7.47	6.39	4.68	3.63	5.17	5.56
1998	7.48	6.08	4.16	3.15	4.74	5.25
1999	7.61	6.10	4.93	2.84	4.71	5.33
2000	8.86	7.48	7.32	4.63	6.05	6.78
$2001{ }^{1}$	10.01	8.63	7.11	5.17	7.27	7.86
2002	8.79	7.29	6.19	3.91	5.92	6.50
2003	10.09	9.14	8.00	5.59	7.75	8.37
2004	11.20	10.03	8.80	6.94	8.56	9.27
$2005{ }^{\text {r }}$	13.34	11.70	11.24	8.92	10.18	10.83
$2006{ }^{\text {r }}$	13.71	11.95	10.44	8.17	10.09	10.97
2007	13.57	11.79	9.64	7.96	10.12	10.86
$2008{ }^{\text {r }}$	14.35	12.57	10.69	9.27	10.95	11.76
2009	11.94	10.55	7.90	5.87	8.78	9.64
2010	11.85	10.20	7.98	5.69	8.32	9.24
2011	11.07	9.55	7.61	5.47	7.70	8.62
2012 ${ }^{\text {p }}$	10.61	9.11	6.82	4.11	7.04	7.84

[^55]r Revised.
Source: Public Service Commission of Wisconsin, Accounts and Finance Division, Statistics of Wisconsin Public Utilities, Bulletin \#8 (1971-1993), and from the PSC-AF 2, Docket 05-GF-159 (1994-2012)

Wisconsin Natural Gas Prices Relative to United States Natural Gas Prices, by Sector

The price of natural gas in Wisconsin is lower than the U.S. average price in the Residential and Commercial sectors, but it was 16.1 percent higher than the U.S. average in the Industrial sector in 2012.

The table shows the Wisconsin and United States prices by sector, while the graph shows the relationship (ratio) between these prices (Wisconsin:U.S.). A value above 1 means that the WI price is more than the U.S. average price, and value below 1 means that the WI price is less than the U.S. average price. A value of 1 means that the WI price is equal to the national average price.

1970-2012 RATIO OF WI TO U.S. NATURAL GAS PRICES

1970-2012 WI AND U.S. NATURAL GAS PRICES (DOLLARS PER MILLION BTU)

Year	WI Natural Gas Price (Dollars Per Million Btu)				U.S. Natural Gas Price (Dollars Per Million Btu)			
	Average	Residential	Commercial	Industrial	Average	Residential	Commercial	Industrial
1970 ${ }^{\text {r }}$	0.79	1.22	0.82	0.54	0.59	1.06	0.75	0.38
$1975{ }^{\text {r }}$	1.30	1.71	1.29	1.03	1.18	1.67	1.32	0.95
1980 ${ }^{\text {r }}$	3.43	3.81	3.43	3.12	2.86	3.60	3.32	2.52
1985 ${ }^{\text {r }}$	5.37	6.41	5.14	4.44	4.61	5.94	5.34	3.87
$1990{ }^{\text {r }}$	4.55	5.70	4.72	3.37	3.82	5.63	4.70	2.95
$1995{ }^{\text {r }}$	4.30	5.76	4.45	2.93	3.73	5.89	4.94	2.80
$2000{ }^{\text {r }}$	6.27	7.48	6.26	5.42	5.61	7.63	6.54	4.60
$2005{ }^{\text {r }}$	10.37	11.77	10.24	9.78	9.92	12.34	10.98	9.08
$2006{ }^{\text {r }}$	10.19	12.04	10.16	9.36	9.62	13.35	11.60	8.77
$2007{ }^{5}$	10.17	11.86	10.22	9.49	9.31	12.70	10.99	8.29
$2008{ }^{\text {r }}$	11.22	12.63	11.03	10.42	10.83	13.52	11.89	10.06
2009 r	8.69	10.61	8.83	7.71	7.67	11.81	9.70	6.46
2010 ${ }^{\text {r }}$	8.40	10.24	8.45	7.49	7.37	11.13	9.20	6.17
$2011{ }^{1}$	7.82	9.63	7.92	6.95	7.03	10.78	8.79	5.96
2012	6.42	9.09	7.20	5.70	5.76	10.44	8.03	4.91

r Revised.

Source: U.S. Department of Energy, Energy Information Administration, State Energy Data System, Wisconsin prices (1970-2012),
http://www.eia.gov/state/seds/seds-data-complete.cfm.

Wisconsin's industrial natural gas prices are 16.1 percent higher than the national average. Smaller sized industrial customers pay the industrial rate, while larger industrial customers purchase natural gas-as transport gas-directly from the natural gas pipeline companies with a pass-through charge from the utilities.

Commerical

customers, such as schools, businesss and governmental facilities, pay 10.3 percent less than the national average, while Wisconsin's residential customers using natural gas for appliances and space heating pay 87.1 percent of the national average. The rates paid by customers vary from month-to-month and can be found on the State Energy Office website.

The prices in this table have been historically revised to align with federal Energy Information Administration data.

Wisconsin Electricity Prices, by Economic Sector

Wisconsin Electricity Prices, by Public Service Commission of Wisconsin Sector

1970-2012 CENTS PER kWh

Year	Residential	Commercial \& Industrial	Rural ${ }^{\text {a }}$	Average ${ }^{\text {b }}$
1970	2.13	1.69	2.41	1.89
1975	3.22	2.60	3.42	2.85
1980	4.80	3.91	4.80	4.24
1985	6.70	5.15	6.38	5.67
1990	6.55	4.68	6.29	5.27
1995	6.91	4.55	6.61	5.27
1996	6.81	4.43	6.40	5.15
1997	6.81	4.40	6.27	5.11
1998	7.16	4.61	6.42	5.35
1999	7.31	4.69	6.56	5.46
2000	7.55	4.83	6.84	5.65
2001	7.93	5.18	7.23	6.01
2002	8.19	5.34	7.59	6.26
2003	8.73	5.63	8.27	6.60
2004	9.11	5.84	8.73	6.81
2005	9.72	6.36	9.23	7.38
2006	10.57	7.01	10.22	8.08
2007	10.90	7.30	10.56	8.38
2008	11.56	7.67	10.90	8.84
2009	11.92	8.03	11.04	9.24
2010	12.67	8.30	12.10	9.66
2011	13.06	8.76	12.41	10.09
$2012{ }^{\text {p }}$	13.19	8.84	12.38	10.18

a Rural, as listed by utilities.
b Utilities' average revenue per kWh.
p Preliminary estimates.
Source: Public Service Commission of Wisconsin, Accounts and Finance Division, Statistics of Wisconsin Public Utilities, Bulletin \#8 (1971-1994); PSC-AF 1, Docket 05-GF-159 (1994-2012).

AVERAGE PRICE OF ELECTRICITY 0.9\%

The prices of electricity for all customers classes, except rural, increased slightly in 2012. The average price of electricity increased by 0.9 percent over 2011. The residential sector increased by 1.0 percent, the commercial and industrial sectors showed a slight increase of 0.9 percent.

These data only include data from the Class A Investor Owned Utilities which comprise approximately 83 percent of all utility sales in the state.
The Public Service
Commission of Wisconsin
and the federal
Department of Energy,
Energy Information

Administration (EIA) both
report electricity prices
for Wisconsin economic
sectors. Because of differences in sector
definitions, accounting
methods and inclusion of
cooperative utilities, their prices do not match.

Average Utility Electricity and Natural Gas Prices, by Economic Sector, for Selected Midwestern States

In 2012, Wisconsin's average electricity price was 4.3 percent greater than the national average and the second highest in the Midwest for all three sectors.

Wisconsin's commercial and industrial electricity prices were higher than the national averages for the same sectors by 4.2 and 9.9 percent respectively.

Illinois and Michigan lead the Midwest with the highest natural gas prices across all three economic sectors.

Wisconsin and Ohio have the third highest prices in the Midwest.

2012 ELECTRICITY (CENTS PER kWh)

State	Average	Residential	Commercial	Industrial
Wisconsin	$\mathbf{1 0 . 3 2}$	$\mathbf{1 3 . 1 9}$	$\mathbf{1 0 . 5 1}$	$\mathbf{7 . 3 5}$
Illinois	8.40	11.37	7.99	5.80
Indiana	8.29	10.53	9.14	6.34
lowa	7.71	10.82	8.01	5.30
Michigan	10.98	14.13	10.93	7.62
Minnesota	8.86	11.35	8.84	6.54
Ohio	9.12	11.76	9.47	6.24
U.S. Average	$\mathbf{9 . 8 9}$	$\mathbf{1 1 . 8 8}$	$\mathbf{1 0 . 0 9}$	$\mathbf{6 . 6 9}$

2012 NATURAL GAS (DOLLARS PER 1,000 CUBIC FEET)

State	City Gate $^{\mathrm{a}}$	Residential	Commercial	Industrial
Wisconsin	6.42	9.09	7.20	5.70
Illinois	6.84	8.17	7.69	5.58
Indiana	6.20	8.83	7.59	6.12
lowa	5.87	9.33	7.03	4.64
Michigan	7.71	10.68	8.21	7.26
Minnesota	5.65	7.85	6.26	4.40
Ohio	6.42	9.59	6.88	5.30
U.S. Average	5.76	$\mathbf{1 0 . 4 4}$	8.03	4.91

[^56]
Wisconsin Electricity Prices Relative to United States Electricity Prices, by Sector

This graph shows the relationship between Wisconsin electric prices and U.S. average electric prices, by sector. A value above 1 means that the WI price is more than the U.S. average price, and value below 1 means that the WI price is less than the U.S. average price. A value of 1 means that the WI price is equal to the national average price.

```
1970-2012 RATIO OF WI TO U.S. ELECTRICITY PRICES
```


1970-2012 WI AND U.S. ELECTRICITY PRICES (CENTS PER kWh)

Year	WI Electricity Prices (Cents Per kWh)				U.S. Electricity Prices (Cents Per kWh)			
	Residential	Commercial	Industrial	Average (All Sectors)	Residential	Commercial	Industrial	Average (All Sectors)
1970 ${ }^{\text {r }}$	2.30	2.48	1.44	2.05	2.22	2.08	1.02	1.70
1975 ${ }^{\text {r }}$	3.43	3.46	2.26	3.03	3.51	3.45	2.07	2.94
$1980{ }^{\text {r }}$	5.13	5.20	3.45	4.55	5.36	5.48	3.69	4.76
1985 ${ }^{\text {r }}$	6.73	6.45	4.31	5.76	7.39	7.27	4.97	6.50
1990 ${ }^{\text {r }}$	6.64	5.82	3.99	5.38	7.84	7.24	4.75	6.59
1995 ${ }^{\text {r }}$	6.97	5.83	3.79	5.38	8.41	7.61	4.67	6.92
$2000{ }^{\text {r }}$	7.54	6.08	4.04	5.72	8.24	7.34	4.64	6.84
2005	9.67	7.67	5.39	7.51	9.45	8.67	5.72	8.16
$2006{ }^{\text {r }}$	10.51	8.38	5.86	8.15	10.41	9.46	6.15	8.92
$2007{ }^{1}$	10.87	8.72	6.16	8.51	10.66	9.65	6.39	9.16
2008	11.52	9.28	6.51	9.03	11.27	10.37	6.81	9.77
2009 r	11.94	9.57	6.74	9.41	11.51	10.17	6.83	9.86
$2010{ }^{\text {r }}$	12.65	9.99	6.85	9.82	11.54	10.19	6.79	9.87
2011 ${ }^{1}$	13.03	10.43	7.33	10.24	11.72	10.24	6.83	9.94
2012	13.19	10.51	7.35	10.32	11.88	10.09	6.69	9.89

[^57]Source: U.S. Department of Energy, Energy Information Administration, State Energy Data System, Wisconsin prices (1970-2012),
http://www.eia.gov/state/seds/seds-data-complete.cfm.

wISCONSIN ELECTRIC PRICES EXCEED NATIONAL ELECTRIC PRICES
 11.0\% FOR RESIDENTIAL CUSTOMERS 4.2\% FOR COMMERCIAL CUSTOMERS
 9.9\%
 FOR INDUSTRIAL CUSTOMERS

The price of electricity in Wisconsin continues to rise, and is now more than the U.S. average price for electricity, in all sectors. Overall, in 2012,

Wisconsin customers paid 4.4 percent more for electricity than the national customer.

In 2012, residential sector prices were 11.0 percent above the national residential price, commercial sector prices were 4.2 percent higher, and industrial prices were 9.9 percent higher.

U.S. Energy Prices

U.S. Spot Market Prices of Crude Oil \& Natural Gas

2012 DOLLARS PER MILLION BTU (2012 DOLLARS) ${ }^{\text {a }}$

2009-2012 DOLLARS PER MILLION BTU

Month	Crude Oil West Texas Intermediate				Natural Gas Henry Hub			
	2009	2010	2011	2012	2009	2010	2011	2012
Jan.	7.19	13.62	15.44	17.29	5.24	5.81	4.47	2.67
Feb.	6.74	13.21	15.53	17.62	4.51	5.12	4.11	2.5
Mar.	8.27	13.96	17.77	18.30	3.96	4.33	3.98	2.17
Apr.	8.56	14.52	18.89	17.81	3.49	4.03	4.20	1.95
May	10.18	12.88	17.53	16.32	3.83	4.10	4.34	2.43
Jun.	12.01	12.97	16.91	14.19	3.80	4.76	4.60	2.46
Jul.	11.06	13.12	16.77	15.15	3.38	4.61	4.37	2.95
Aug.	12.25	13.04	14.78	16.23	3.14	4.20	4.03	2.84
Sep.	11.97	12.95	14.89	16.30	2.99	3.93	3.93	2.85
Oct.	13.05	14.11	14.76	15.43	4.01	3.48	3.55	3.32
Nov.	13.48	14.49	16.75	14.92	3.70	3.75	3.18	3.54
Dec.	12.82	15.40	16.93	15.15	5.30	4.22	3.12	3.34
Average \$/MMBtu	10.63	13.69	16.41	16.23	3.95	4.36	3.99	2.75
Average \$/Barrel	61.66	79.39	95.18	94.05				

a Graph is plotted with daily 2012 data.
b Henry Hub is a natural gas pipeline hub in Louisiana
Source: Oil Daily, electronically received data (2006-2008); U.S. Department of Energy, Energy Information Administration
http://tonto.eia.doe.gov/dnav/pet/pet_pri_spt_s1_d.htm (2009-2012); Henry Hub data also from http://www.neo.ne.gov/statshtml/124_20081203.htm (2008); Bloomberg.com Energy Prices (2009-2011); U.S. Department of Energy, Energy Information Administration

WEST TEXAS INTERMEDIATE
1.1\%

HENRY HUB
31.0\%

In 2012, the average
West Texas Intermediate crude oil spot market price decreased 1.1 percent, while the Henry Hubb spot market price of natural gas decreased 31.0 percent.

National Indices of Price Inflation

CHAPTER 7

Wisconsin Expenditures for Energy

Wisconsin End-Use Energy Expenditures, by Type of Fuel

2012 MILLIONS OF DOLLARS AND PERCENT OF TOTAL

Wisconsin End-Use Energy Expenditures, by Type of Fuel

The tables in this chapter show annual expenditures for the major energy resources used by Wisconsin's residential, commercial, industrial, agricultural and transportation sectors since 1970. Because consistent and reliable historic prices of wood, waste fuels and biogas are not available, expenditures for these fuels are excluded from the tables.

1970-2012 MILLIONS OF DOLLARS AND PERCENT OF TOTAL

Year	Petroleum		Natural Gas		Coal		Electricity		Total
$1970{ }^{\text {r }}$	893.1	51.6\%	244.6	14.1\%	90.1	5.2\%	502.6	29.0\%	1,730.3
$1975{ }^{\text {r }}$	1,732.9	53.7\%	457.1	14.2\%	86.2	2.7\%	949.9	29.4\%	3,226.1
$1980{ }^{\text {r }}$	3,770.7	56.0\%	1,133.8	16.8\%	89.0	1.3\%	1,736.8	25.8\%	6,730.2
$1985{ }^{\text {r }}$	3,642.1	46.6\%	1,616.8	20.7\%	121.6	1.6\%	2,431.2	31.1\%	7,811.8
$1990{ }^{\text {r }}$	3,736.2	47.3\%	1,381.9	17.5\%	102.9	1.3\%	2,672.0	33.9\%	7,893.0
$1995{ }^{\text {r }}$	3,972.6	45.1\%	1,607.3	18.3\%	85.6	1.0\%	3,138.8	35.7\%	8,804.4
$1996{ }^{\text {r }}$	4,522.5	47.2\%	1,867.5	19.5\%	81.3	0.8\%	3,116.1	32.5\%	9,587.4
$1997{ }^{\text {r }}$	4,549.0	46.5\%	1,992.1	20.4\%	80.3	0.8\%	3,165.3	32.3\%	9,786.8
$1998{ }^{\text {r }}$	3,974.2	43.7\%	1,632.4	18.0\%	78.3	0.9\%	3,407.0	37.5\%	9,091.9
1999 r	4,445.4	45.2\%	1,776.4	18.1\%	74.3	0.8\%	3,543.5	36.0\%	9,839.5
$2000{ }^{\prime}$	5,785.5	48.4\%	2,366.3	19.8\%	80.1	0.7\%	3,719.6	31.1\%	11,951.4
$2001{ }^{1}$	5,735.5	45.8\%	2,671.9	21.3\%	90.9	0.7\%	4,022.0	32.1\%	12,520.4
$2002{ }^{\text {r }}$	5,441.5	45.2\%	2,250.7	18.7\%	101.5	0.8\%	4,237.6	35.2\%	12,031.2
$2003{ }^{\text {r }}$	6,285.6	45.2\%	3,003.6	21.6\%	98.8	0.7\%	4,505.1	32.4\%	13,893.1
2004	7,479.0	48.2\%	3,206.3	20.7\%	109.2	0.7\%	$4,714.5$	30.4\%	15,508.9
$2005{ }^{\text {r }}$	9,067.0	49.9\%	3,751.3	20.6\%	128.3	0.7\%	5,244.8	28.9\%	18,191.5
$2006{ }^{\text {r }}$	10,170.9	52.3\%	3,475.1	17.8\%	146.2	0.8\%	5,653.8	29.1\%	19,446.0
$2007{ }^{1}$	11,248.2	53.4\%	3,665.6	17.3\%	151.7	0.7\%	6,027.1	28.6\%	21,092.6
$2008{ }^{\text {r }}$	13,001.5	55.0\%	4,237.6	17.7\%	155.8	0.7\%	6,292.6	26.6\%	23,687.5
2009 r	8,783.8	48.0\%	3,187.9	17.3\%	151.7	0.8\%	6,193.9	33.9\%	18,317.3
$2010{ }^{\text {r }}$	10,521.3	51.9\%	2,899.0	14.2\%	158.3	0.8\%	6,698.6	33.1\%	20,277.3
$2011{ }^{1}$	13,038.4	56.6\%	2,857.9	12.3\%	158.8	0.7\%	6,981.2	30.3\%	23,036.4
2012 ${ }^{\text {p }}$	13,579.7	58.8\%	2,332.1	10.0\%	146.6	0.6\%	7,052.6	30.5\%	23,111.0

p Preliminary estimates.

r Revised due to revisions in price and consumption data.
Source: Compiled from tables in this publication for Wisconsin petroleum, natural gas, coal and electricity use and prices, by economic sector.
wisconsin's
OVERALL ENERGY BILL 0.3\%

In 2012, Wisconsin's overall energy bill increased 0.3 percentfrom $\$ 23.0$ billion in 2011 to $\$ 23.1$ billion. This increase of $\$ 74.7$ million means 2012 expenditures were the highest since 2008.

Expenditures increased for petroleum (\$541.4 million or 4.2 percent) and electricity (\$71.4 million, 1.0 percent), and fell for natural gas ($\$ 525.8$ million, 18.4 percent) and coal (\$12.3 million, 7.7 percent). Since 2000, Wisconsin's total energy expenditures have almost doubled—a 93.4 percent increase-by $\$ 11.2$ billion.
,

In 2012, Wisconsin's

Wisconsin End-Use Energy Expenditures, by Economic Sector

2012 MILLIONS OF DOLLARS AND PERCENT OF TOTAL

1970-2012 MILLIONS OF DOLLARS

Wisconsin End-Use Energy Expenditures, by Economic Sector

1970-2012 MILLIONS OF DOLLARS AND PERCENT OF TOTAL

Year	Residential		Commercial		Industrial		Agricultural		Transportation		Total
1970 ${ }^{\text {r }}$	494.7	28.6\%	221.0	12.8\%	290.7	16.8\%	59.6	3.4\%	664.3	38.4\%	1,730.3
$1975{ }^{\text {r }}$	851.4	26.4\%	443.0	13.7\%	523.1	16.2\%	106.9	3.3\%	1,301.7	40.3\%	3,226.1
$1980{ }^{\circ}$	1,606.0	23.9\%	881.4	13.1\%	1,015.4	15.1\%	236.8	3.5\%	2,990.6	44.4\%	6,730.2
$1985{ }^{\text {r }}$	2,095.3	26.8\%	1,242.5	15.9\%	1,287.0	16.5\%	261.8	3.4\%	2,925.1	37.4\%	7,811.8
1990r	2,047.2	25.9\%	1,313.3	16.6\%	1,214.6	15.4\%	222.6	2.8\%	3,095.3	39.2\%	7,893.0
$1995{ }^{\text {r }}$	2,320.9	26.4\%	1,469.6	16.7\%	1,357.7	15.4\%	196.0	2.2\%	3,460.0	39.3\%	8,804.4
$1996{ }^{\text {r }}$	2,512.6	26.2\%	1,560.1	16.3\%	1,435.8	15.0\%	212.8	2.2\%	3,866.1	40.3\%	9,587.4
$1997{ }^{1}$	2,444.6	25.0\%	1,590.6	16.3\%	1,622.2	16.6\%	206.6	2.1\%	3,922.8	40.1\%	9,786.8
$1998{ }^{\text {r }}$	2,243.1	24.7\%	1,573.1	17.3\%	1,569.7	17.3\%	185.8	2.0\%	3,520.4	38.7\%	9,091.9
1999 r	2,408.1	24.5\%	1,679.3	17.1\%	1,629.8	16.6\%	196.0	2.0\%	3,926.4	39.9\%	9,839.5
$2000{ }^{\prime}$	2,801.9	23.4\%	1,888.3	15.8\%	1,948.3	16.3\%	234.5	2.0\%	5,078.4	42.5\%	11,951.4
$2001{ }^{1}$	3,050.3	24.4\%	2,034.4	16.2\%	2,190.8	17.5\%	235.3	1.9\%	5,009.6	40.0\%	12,520.4
$2002{ }^{\text {r }}$	3,017.1	25.1\%	2,060.2	17.1\%	1,904.0	15.8\%	227.5	1.9\%	4,822.4	40.1\%	12,031.2
$2003{ }^{1}$	3,627.7	26.1\%	2,177.7	15.7\%	2,308.4	16.6\%	261.3	1.9\%	5,517.9	39.7\%	13,893.1
$2004{ }^{\text {r }}$	3,807.1	24.5\%	2,252.4	14.5\%	2,574.0	16.6\%	282.1	1.8\%	6,593.3	42.5\%	15,508.9
$2005{ }^{\text {r }}$	4,249.2	23.4\%	2,690.5	14.8\%	2,961.5	16.3\%	379.9	2.0\%	7,910.3	43.5\%	18,191.5
$2006{ }^{\text {r }}$	4,349.1	22.4\%	2,838.1	14.6\%	2,937.3	15.1\%	487.3	2.4\%	8,834.2	45.5\%	19,446.0
$2007{ }^{1}$	4,632.9	22.0\%	3,031.3	14.4\%	3,118.0	14.8\%	544.6	2.5\%	9,765.8	46.3\%	21,092.6
$2008{ }^{\text {r }}$	5,051.7	21.4\%	3,360.0	14.2\%	3,330.9	14.1\%	653.1	2.6\%	11,291.9	47.8\%	23,687.5
2009 r	4,460.3	24.4\%	2,985.9	16.3\%	2,664.8	14.6\%	555.5	2.9\%	7,650.8	41.8\%	18,317.3
$2010{ }^{\text {r }}$	4,525.0	22.3\%	3,008.6	14.8\%	2,734.0	13.5\%	557.0	2.7\%	9,452.7	46.6\%	20,277.3
2011 ${ }^{1}$	4,631.8	20.1\%	3,154.4	13.7\%	2,834.8	12.3\%	615.9	2.6\%	11,799.5	51.3\%	23,036.4
$2012{ }^{\text {p }}$	4,279.7	18.5\%	3,056.7	13.2\%	2,687.2	11.6\%	681.4	2.9\%	12,406.1	53.7\%	23,111.0

wISCONSIN'S END-USE ENERGY EXPENDITURES

0.3\% OVERALL

In 2012, energy expenditures increased overall by 0.3 percent, or $\$ 74.7$ million.

The agriculture (\$65.5 million, 10.6 percent) and transportation sectors ($\$ 606.0$ million, 5.1 percent) saw increases in expenditures.

The remaining sectors saw decreases of $\$ 352.1$ million (7.6 percent) in the residential sector, $\$ 97.8$ million (3.1 percent) in the commercial sector, and \$147.7 million
(5.2 percent) in the industrial sector.

Wisconsin Resource Use Energy Expenditures, Estimated Dollars Leaving Wisconsin

This page estimates the amount of money spent on energy in Wisconsin that leaves the state. In 2012, $\$ 15.7$ billion-a 1.3 percent increase over 2011-left the state, comprising 68.1 percent of Wisconsin's
$\$ 23.1$ billion in end-use energy expenditures.

Like the other tables in this chapter, these dollar amounts do not include specific expenditures on renewable energy. The exception is where imported electricity is generated by renewable sources.

Of all petroleum energy expenditures, 85 percent are estimated to leave the state because petroleum refining operations are not located in Wisconsin, with the exception of Murphy Oil in Superior. The 15 percent estimated to stay in the state is due to Wisconsin-based gasoline and diesel blenders and retailers, LP and heating oil businesses, and utility revenues. Natural Gas production occurs out-of-state and natural gas pipelines are owned by out-of-state companies. The 15 percent estimated to stay in Wisconsin is attributed to in-state natural gas distribution businesses, LP businesses, and utility revenues.

Ninety-five percent of all expenditures on coal leave Wisconsin because this is an out-of-state resource. The five percent of expenditures estimated to stay in-state are attributed to utility revenues. All of the expenditures on imported electricity are necessarily attributed to out-of-state expenditures because this electricity is purchased from generation sources not based in Wisconsin.

1970-2012 MILLIONS OF DOLLARS

Year	Petroleum		Natural Gas		Coal		Imported Electricity		Total Expenditure Leaving State
	Expenditures	Expenditure Leaving State							
1970 ${ }^{\text {r }}$	898.9	764.1	257.6	219.0	177.1	168.2	-51.2	-51.2	1,100.2
1975	1,753.6	1,490.6	473.3	402.3	267.2	253.8	-54.7	-54.7	2,092.1
1980 ${ }^{\prime}$	3,798.3	3,228.5	1,175.3	999.0	471.5	447.9	-26.0	-26.0	4,649.5
$1985{ }^{\text {r }}$	3,651.8	3,104.0	1,622.6	1,379.2	664.9	631.6	-9.2	-9.2	5,105.7
1990 ${ }^{\text {r }}$	3,742.9	3,181.5	1,388.9	1,180.6	585.4	556.1	417.6	417.6	5,335.7
$1995{ }^{\text {r }}$	3,975.8	3,379.5	1,629.6	1,385.2	555.8	528.0	585.1	585.1	5,877.8
1996 ${ }^{\text {r }}$	4,527.1	3,848.0	1,889.8	1,606.3	546.4	519.1	373.8	373.8	6,347.2
$1997{ }^{\text {r }}$	4,556.1	3,872.7	2,042.5	1,736.2	583.9	554.7	604.3	604.3	6,767.8
$1998{ }^{\text {r }}$	3,980.5	3,383.4	1,697.3	1,442.7	558.6	530.7	520.2	520.2	5,877.1
1999	4,453.6	3,785.5	1,838.9	1,563.1	543.1	516.0	490.7	490.7	6,355.3
$2000{ }^{\circ}$	5,795.4	4,926.1	2,461.3	2,092.1	560.9	532.8	497.1	497.1	8,048.1
$2001{ }^{1}$	5,749.4	4,887.0	2,778.8	2,362.0	586.1	556.8	655.9	655.9	8,461.7
2002	5,449.4	4,632.0	2,325.2	1,976.4	604.3	574.1	560.0	560.0	7,742.5
2003	6,296.8	5,352.3	3,146.2	2,674.3	637.3	605.4	512.6	512.6	9,144.6
$2004{ }^{\text {r }}$	7,492.0	6,368.2	3,343.9	2,842.3	672.2	638.6	574.2	574.2	10,423.3
$2005{ }^{\text {r }}$	9,090.0	7,726.5	4,266.9	3,626.9	735.3	698.5	833.3	833.3	12,885.2
$2006{ }^{\text {r }}$	10,194.1	8,665.0	3,798.6	3,228.8	828.4	787.0	408.6	408.6	13,089.4
$2007{ }^{\circ}$	11,279.3	9,587.4	4,073.5	3,462.5	928.9	882.5	665.0	665.0	14,597.3
$2008{ }^{\text {r }}$	13,024.1	11,070.5	4,617.5	3,924.8	1,111.4	1,055.9	577.8	577.8	16,629.0
$2009{ }^{\text {r }}$	8,791.0	7,472.3	3,385.9	2,878.0	1,030.0	978.5	567.7	567.7	11,896.5
$2010{ }^{\circ}$	10,529.7	8,950.2	3,130.5	2,660.9	1,168.3	1,109.9	422.4	422.4	13,143.5
$2011{ }^{1}$	13,049.5	11,092.1	3,092.7	2,628.8	1,278.9	1,214.9	603.2	603.2	15,539.0
2012 ${ }^{\text {p }}$	13,592.7	11,553.8	2,617.4	2,224.8	1,041.1	989.1	972.4	972.4	15,740.1

p Preliminary estimates.
r Revised due to revisions in price and consumption data.
Source: Compiled from tables in this publication for Wisconsin petroleum, natural gas, coal and electricity use and prices, by economic sector.

Wisconsin Expenditures for Residential Energy, by Type of Fuel

1970-2012 MILLIONS OF DOLLARS

1970-2012 MILLIONS OF DOLLARS AND PERCENT OF TOTAL

Year	Petroleum		Natural Gas		Coal		Electricity		Total ${ }^{\text {a }}$
1970 ${ }^{\text {r }}$	146.8	29.7\%	130.5	26.4\%	15.5	3.1\%	201.8	40.8\%	494.7
1975	257.0	30.2\%	209.4	24.6\%	11.8	1.4\%	373.3	43.8\%	851.4
1980 ${ }^{\circ}$	482.3	30.0\%	472.4	29.4\%	9.0	0.6\%	642.3	40.0\%	1,606.0
1985 ${ }^{\text {r }}$	449.2	21.4\%	749.6	35.8\%	3.8	0.2\%	892.7	42.6\%	2,095.3
1990 ${ }^{\text {r }}$	413.7	20.2\%	653.6	31.9\%	1.3	0.1\%	978.5	47.8\%	2,047.2
$1995{ }^{\text {r }}$	340.2	14.7\%	792.0	34.1\%	1.1	0.0\%	1,187.6	51.2\%	2,320.9
$2000{ }^{\circ}$	409.1	14.6\%	1,020.6	36.4\%	0.7	0.0\%	1,371.5	48.9\%	2,801.9
$2005{ }^{\text {r }}$	616.4	14.5\%	1,564.5	36.8\%	0.6	0.0\%	2,067.7	48.7\%	4,249.2
$2006{ }^{\text {r }}$	702.0	16.1\%	1,467.6	33.7\%	0.5	0.0\%	2,179.0	50.1\%	4,349.1
$2007{ }^{5}$	723.8	15.6\%	1,577.3	34.0\%	0.4	0.0\%	2,331.4	50.3\%	4,632.9
$2008{ }^{\text {r }}$	834.8	16.5\%	1,800.3	35.6\%	0.0	0.0\%	2,416.5	47.8\%	5,051.7
2009 r	585.1	13.1\%	1,432.8	32.1\%	0.0	0.0\%	2,442.4	54.8\%	4,460.3
2010 ${ }^{\circ}$	548.7	12.1\%	1,278.5	28.3\%	0.0	0.0\%	2,697.8	59.6\%	4,525.0
2011 ${ }^{1}$	599.6	12.9\%	1,264.0	27.3\%	0.0	0.0\%	2,768.2	59.8\%	4,631.8
$2012{ }^{\text {p }}$	464.7	10.9\%	1,042.6	24.4\%	0.0	0.0\%	2,772.5	64.8\%	4,279.7

wISCONSIN'S OVERALL RESIDENTIAL ENERGY EXPENDITURES 7.6\%

In 2012, overall residential energy expenditures decreased by 7.6 percent ($\$ 352.1$ million) from 2011.

Expenditures increased for electricity (0.2 percent, $\$ 4.3$ million) while petroleum and natural gas saw decreases of 22.5 percent ($\$ 134.9$ million) and 17.5 percent (\$221.4 million), respectively.

Increases in natural gas expenditures are primarily due to the use of natural gas as a space heating fuel, while petroleum expenditures are due primarily to transportation expenses.

[^58]
Wisconsin Expenditures for Commercial Energy, by Type of Fuel

[^59]
Wisconsin Expenditures for Industrial Energy, by Type of Fuel

1970-2012 MILLIONS OF DOLLARS

WISCONSIN
EXPENDITURES FOR
INDUSTRIAL ENERGY

1970-2012 MILLIONS OF DOLLARS AND PERCENT OF TOTAL

Year	Petroleum		Natural Gas		Coal		Electricity		Total ${ }^{\text {a }}$
1970 ${ }^{\text {r }}$	15.5	5.3\%	79.4	27.3\%	63.1	21.7\%	132.6	45.6\%	290.7
$1975{ }^{\text {r }}$	42.9	8.2\%	174.2	33.3\%	63.4	12.1\%	242.6	46.4\%	523.1
1980 ${ }^{\text {r }}$	62.2	6.1\%	450.8	44.4\%	73.2	7.2\%	429.2	42.3\%	1,015.4
1985 ${ }^{\text {r }}$	17.3	1.3\%	559.9	43.5\%	108.5	8.4\%	601.4	46.7\%	1,287.0
1990r	29.5	2.4\%	413.2	34.0\%	93.5	7.7\%	678.5	55.9\%	1,214.6
$1995{ }^{\text {r }}$	41.1	3.0\%	432.5	31.9\%	78.3	5.8\%	805.8	59.4\%	1,357.7
$2000{ }^{\text {r }}$	93.8	4.8\%	831.7	42.7\%	71.3	3.7\%	951.6	48.8\%	1,948.3
$2005{ }^{\text {r }}$	184.0	6.2\%	1,293.6	43.7\%	115.5	3.9\%	1,368.4	46.2\%	2,961.5
$2006{ }^{1}$	203.9	6.9\%	1,120.4	38.1\%	132.0	4.5\%	1,480.9	50.4\%	2,937.3
$2007{ }^{1}$	245.0	7.9\%	1,165.4	37.4\%	139.7	4.5\%	1,567.8	50.3\%	3,118.0
$2008{ }^{\text {r }}$	226.8	6.8\%	1,350.5	40.5\%	147.0	4.4\%	1,606.6	48.2\%	3,330.9
2009 r	75.7	2.8\%	935.9	35.1\%	144.8	5.4\%	1,508.5	56.6\%	2,664.8
$2010{ }^{\text {r }}$	58.6	2.1\%	918.4	33.6\%	150.5	5.5\%	1,606.4	58.8\%	2,734.0
$2011{ }^{1}$	73.6	2.6\%	894.0	31.5\%	152.1	5.4\%	1,715.2	60.5\%	2,834.8
2012 ${ }^{\text {p }}$	93.3	3.5\%	722.2	26.9\%	140.4	5.2\%	1,731.3	64.4\%	2,687.2

[^60]
Wisconsin Expenditures for Agricultural Energy, by Type of Fuel

Wisconsin Expenditures for Transportation Energy, by Type of Fuel

1970-2012 MILLIONS OF DOLLARS

1970-2012 MILLIONS OF DOLLARS AND PERCENT OF TOTAL

Year	Vehicle Gasoline ${ }^{\text {a }}$		Diesel Fuel		Aviation Gasoline		Jet Fuel		Middle Distillate		Natural Gas		Total
1970	626.2	94.3\%	23.0	3.5\%	2.4	0.4\%	5.9	0.9\%	6.7	1.0\%			664.3
1975	1,187.1	91.2\%	74.4	5.7\%	4.5	0.3\%	21.2	1.6\%	14.5	1.1\%			1,301.7
1980	2,531.3	84.6\%	335.7	11.2\%	8.4	0.3\%	72.7	2.4\%	42.5	1.4\%			2,990.6
1985	2,369.2	81.0\%	470.0	16.1\%	5.2	0.2\%	52.6	1.8\%	28.1	1.0\%			2,925.1
1990	2,429.2	78.5\%	570.8	18.4\%	5.3	0.2\%	68.0	2.2\%	22.0	0.7\%			3,095.3
1995	2,661.8	76.9\%	724.6	20.9\%	5.6	0.2\%	45.0	1.3\%	23.1	0.7\%			3,460.0
2000	3,850.2	75.8\%	1,101.7	21.7\%	8.0	0.2\%	81.3	1.6\%	37.2	0.7\%			5,078.4
2005	5,946.8	75.2\%	1,684.1	21.3\%	8.6	0.1\%	194.6	2.5\%	76.0	1.0\%	0.289	0.004\%	7,910.3
2006	6,550.7	74.2\%	1,964.8	22.2\%	8.7	0.1\%	214.2	2.4\%	95.6	1.1\%	0.264	0.003\%	8,834.2
2007	7,348.0	75.2\%	2,083.1	21.3\%	8.0	0.1\%	218.9	2.2\%	107.5	1.1\%	0.316	0.003\%	9,765.8
2008	8,203.7	72.7\%	2,644.5	23.4\%	9.0	0.1\%	322.7	2.9\%	111.8	1.0\%	0.316	0.003\%	11,291.9
2009	5,892.2	77.0\%	1,507.8	19.7\%	4.7	0.1\%	188.1	2.5\%	57.8	0.8\%	0.308	0.004\%	7,650.8
2010	7,153.1	75.7\%	1,992.5	21.1\%	6.7	0.1\%	220.4	2.3\%	79.5	0.8\%	0.521	0.006\%	9,452.7
2011	8,866.9	75.2\%	2,537.6	21.5\%	9.5	0.1\%	265.5	2.3\%	119.1	1.0\%	0.933	0.008\%	11,799.5
$2012{ }^{\text {p }}$	9,003.5	72.6\%	3,012.4	24.3\%	13.3	0.1\%	202.0	1.6\%	172.1	1.4\%	2.787	0.022\%	12,406.1

WISCONSIN'S TRANSPORTATION ENERGY BILL 5.1\%

Wisconsin's transportation energy bill increased 5.1 percent ($\$ 606.6$ million dollars) in 2012. Vehicle gasoline accounts for 72.6 percent of all transportation expenditures, costing motorists $\$ 9$ billion.

2011 was the first

year that compressed natural gas vehicle fuel is included in the calculation of overall transportation expenditures.

> Information about
natural gas as a vehicle fuel, as well as a refueling station map locator, can be found on the Wisconsin State Energy Office website at www. stateenergyoffice.wi.gov.

[^61]p Preliminary estimates.
Source: Compiled from tables in this publication for Wisconsin transportation energy use and prices.

CHAPTER 8

Miscellaneous

United States Energy Use and Gross Domestic Product

The federal Bureau of Economic Analysis (BEA) periodically adjusts the base year for economic data. These data represent the most recent revision of BEA data to 2005 as the base year.

1970-2012

$\left.\begin{array}{|ccccccc}\hline \text { Year } & \begin{array}{c}\text { Resident } \\ \text { Population } \\ \text { (Thousands),r }\end{array} & \begin{array}{c}\text { Gross Domestic } \\ \text { Product } \\ \text { (Bil. of 2005\$) }\end{array} & \begin{array}{c}\text { Resource Energy } \\ \text { Consumption } \\ \text { (Quad. Btu) }\end{array} & \begin{array}{c}\text { Electric Sales to } \\ \text { Ultimate Customers } \\ \text { (Bil. of kWh) }\end{array} & \begin{array}{c}\text { Resource Energy } \\ \text { Per GDP }\end{array} & \begin{array}{c}\text { Electric Sales } \\ \text { Per GDP } \\ \text { (Thous. Btu/2005\$) }\end{array} \\ \text { (kWh/2005\$) }\end{array}\right]$
a As of July 1 .
c Quadrillions of Btu.
d Beginning in 1975, the DOE data source has been used.
p Preliminary.
r Revised.
Source: U.S. Department of Energy, Energy Information Administration, Monthly Energy Review (March 2013), http://www.eia.doe.gov/mer/;Tables 1.3 and 7.1 (1970-2012); Wisconsin Department of Administration Demographic Services resident, national population estimates as of July 1 (1970-2012). Bureau of Economic Analysis, Regional Economic Accounts, http://www.bea.gov/bea/regional/ (1970-2012).

ENERGY USE PER DOLLAR OF GDP
 47.7%
 ``` SINCE

198```}

Until the early 1970s, energy use kept pace with the growth in the nation's economy. Economic growth during the 1970s and early 1980s was accompanied by slower growth in energy use due to increases in efficiency and a shift away from energy intensive industries.

Efficiency, in terms of decreasing energy required to produce a dollar of Gross Domestic Product, continues to increase slowly.

The ratio between electric sales and Gross Domestic Product has fallen 3.8 percent since 2011, and 24.5 percent since 1980. Energy use per dollar of Gross Domestic Product declined 4.5 percent since 2011 and 47.7 percent since 1980 .

\section*{Wisconsin Population, Households, Gross State Product and Personal Income}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{9}{*}{Wisconsin's population and number of households continue to grow slowly, with increases over 2011 of 0.1 and 0.3 percent respectively.} & \multicolumn{11}{|l|}{Data in this table are provided as a reference point for making per capita comparisons. To explain recent increases in residential energy use, personal income per capita and per household are shown in current and constant 2012 dollars.} \\
\hline & \multicolumn{11}{|l|}{1970-2012} \\
\hline & \multirow[b]{2}{*}{Year} & \multirow[b]{2}{*}{\[
\begin{aligned}
& \text { GDP } \\
& \text { Deflator }
\end{aligned}
\]} & \multirow[b]{2}{*}{Population (Thousands)} & \multirow[b]{2}{*}{No. of Households \({ }^{\text {a }}\) (Thousands)} & \multirow[t]{2}{*}{Gross State Product (Million 2012 Dollars)} & \multicolumn{3}{|l|}{Personal Income \({ }^{\text {b }}\) (Current Dollars)} & \multicolumn{3}{|l|}{Personal Income \({ }^{\text {b }}\) (2012 Dollars)} \\
\hline & & & & & & Total (Million Dollars) & Dollars Per Capita & Dollars Per Household & Total (Million Dollars) & Dollars Per Capita & Dollars Per Household \\
\hline & \(1970{ }^{\text {r }}\) & 24.34 & 4,417.8 & 1,328.8 & 95,738 & 17,621 & 3,989 & & 83,546 & 18,911 & 62,874 \\
\hline & \(1975{ }^{\text {r }}\) & 33.59 & 4,565.8 & 1,486.8 & 111,278 & 27,830 & 6,095 & 18,718 & 95,597 & 20,938 & 64,297 \\
\hline & \(1980{ }^{\circ}\) & 47.79 & 4,705.6 & 1,652.3 & 127,721 & 47,519 & 10,098 & 28,760 & 114,731 & 24,382 & 69,439 \\
\hline & 1985 & 61.63 & 4,744.7 & 1,720.4 & 138,212 & 65,132 & 13,727 & 37,860 & 121,947 & 25,702 & 70,885 \\
\hline & \(1990{ }^{\text {r }}\) & 72.26 & 4,891.8 & 1,822.1 & 160,056 & 88,213 & 18,033 & 48,412 & 140,858 & 28,795 & 77,304 \\
\hline \multirow[b]{3}{*}{After growing at an annual rate of 2.4} & \(1995{ }^{\text {r }}\) & 81.61 & 5,101.6 & 1,946.3 & 191,323 & 116,074 & 22,753 & 59,639 & 164,124 & 32,171 & 84,326 \\
\hline & \(1996{ }^{\text {r }}\) & 83.16 & 5,143.0 & 1,971.6 & 199,032 & 122,953 & 23,907 & 62,362 & 170,601 & 33,171 & 86,530 \\
\hline & 1997 & 84.63 & 5,192.3 & 1,998.4 & 206,235 & 130,478 & 25,129 & 65,292 & 177,902 & 34,263 & 89,023 \\
\hline \multirow[t]{2}{*}{percent over the 10-year period from 1990 to} & \(1998{ }^{\text {r }}\) & 85.58 & 5,234.4 & 2,024.5 & 216,153 & 141,019 & 26,941 & 69,658 & 190,126 & 36,323 & 93,914 \\
\hline & 1999 r & 86.84 & 5,274.8 & 2,053.9 & 225,550 & 147,462 & 27,956 & 71,795 & 195,932 & 37,145 & 95,393 \\
\hline \multirow[t]{2}{*}{2000, 2012 household income (in constant} & \(2000{ }^{\text {r }}\) & 88.72 & 5,363.7 & 2,084.6 & 230,656 & 156,603 & 29,197 & 75,125 & 203,667 & 37,971 & 97,703 \\
\hline & \(2001{ }^{1}\) & 90.73 & 5,400.4 & 2,115.7 & 233,427 & 162,773 & 30,141 & 76,935 & 207,014 & 38,333 & 97,846 \\
\hline \multirow[t]{2}{*}{2012 dollars) has slowed} & 2002 & 92.20 & 5,453.9 & 2,147.3 & 238,093 & 167,708 & 30,750 & 78,103 & 209,892 & 38,485 & 97,748 \\
\hline & \(2003{ }^{\text {r }}\) & 94.14 & 5,490.7 & 2,170.9 & 242,819 & 173,248 & 31,553 & 79,804 & 212,360 & 38,676 & 97,821 \\
\hline \multirow[t]{2}{*}{to an annual rate of 1.2 percent since 1990.} & \(2004{ }^{\text {r }}\) & 96.79 & 5,533.0 & 2,197.4 & 249,052 & 180,303 & 32,587 & 82,055 & 214,954 & 38,850 & 97,824 \\
\hline & \(2005{ }^{\text {r }}\) & 100.00 & 5,580.8 & 2,223.5 & 252,338 & 186,545 & 33,426 & 83,897 & 215,248 & 38,570 & 96,806 \\
\hline \multirow[b]{3}{*}{Household income growth, in constant} & \(2006{ }^{\text {r }}\) & 103.23 & 5,617.7 & 2,242.5 & 255,620 & 198,556 & 35,344 & 88,543 & 221,936 & 39,506 & 98,970 \\
\hline & 2007 & 106.23 & 5,648.1 & 2,254.8 & 256,918 & 206,648 & 36,587 & 91,647 & 224,468 & 39,742 & 99,550 \\
\hline & 2008 & 108.58 & 5,675.2 & 2,265.7 & 250,889 & 215,330 & 37,943 & 95,041 & 228,824 & 40,320 & 100,997 \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
2012 dollars, averaged \\
1.2 percent annually
\end{tabular}} & \(2009{ }^{\text {r }}\) & 109.53 & 5,688.0 & 2,275.5 & 249,923 & 208,963 & 36,737 & 91,832 & 220,137 & 38,702 & 96,743 \\
\hline & \(2010{ }^{\circ}\) & 110.99 & 5,696.0 & 2,279.8 & 255,132 & 216,339 & 37,981 & 94,895 & 224,904 & 39,485 & 98,652 \\
\hline \multirow[t]{2}{*}{over the 22-year period since 1990, while 2012} & \(2011{ }^{\text {r }}\) & 113.36 & 5,687.0 & 2,287.8 & 257,882 & 226,042 & 39,747 & 98,803 & 230,086 & 40,458 & 100,571 \\
\hline & \(2012{ }^{\text {p }}\) & 115.39 & 5,694.2 & 2,295.0 & 261,548 & 232,129 & 40,766 & 101,148 & 232,129 & \multicolumn{2}{|l|}{40,766 101,148} \\
\hline \multicolumn{12}{|l|}{\multirow[t]{3}{*}{\begin{tabular}{l}
represents a 0.6 percent \\
increase in household \\
income. Gross State \\
Product in 2012 dollars \\
a Household numbers for intercensal years estimated on basis of Public Service Commission of Wisconsin reports of electric utility residential \\
increased 1.4 percent in customers. Starting in 2000, estimates are from the Department of Administration, Wisconsin Demographic Services Center. \\
2012 compared to 2011. \\
b Personal Income data are annually revised based on federal BEA adjustments (2012). \\
p Preliminary estimates. \\
r Revised. \\
Source: U.S. Department of Commerce, Bureau of Census, Population Division, 2000 Census of Population and Housing, CPH-1-51 (August 2001) and Preliminary Estimates of the Resident Population for the United States, Regions, States, and Puerto Rico: April 1, 2000 to July 1, 2012 (NST-PEST2010-01) (February 2012); Final Official Population Estimates and Census Counts for Wisconsin Counties: 1970 - 2008; Department of Administration, Wisconsin Demographic Services Center (1970-2012) and Intercensally Revised Annual Estimates of Residents Housing Units and Households in Wisconsin, 1990-2012 (May 2012); U.S. Department of Commerce, Bureau of Economic Analysis, Regional Economic Accounts, http://www.bea.gov/bea/regional/ (1970-2012).
\end{tabular}}} \\
\hline & & & & & & & & & & & \\
\hline & & & & & & & & & & & \\
\hline
\end{tabular}

\section*{Wisconsin Employment, by Type}
```

1970-2012 THOUSANDS

```
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Year & Working Age
\[
18-64
\] & Total Employment \({ }^{\text {a }}\) & Percent Working Age Employed & Total NonFarmb \({ }^{\text {be }}\) & Goods Producing \({ }^{\text {b,c }}\) & Services Producing \({ }^{\text {b,d }}\) \\
\hline 1970 & 2,362.6 & & & 1,530.5 & 565.7 & 964.8 \\
\hline 1975 & 2,572.5 & & & 1,677.0 & 570.5 & 1,106.5 \\
\hline 1980 & 2,783.7 & & & 1,938.1 & 630.6 & 1,307.5 \\
\hline 1985 & 2,858.3 & & & 1,983.1 & 580.4 & 1,402.7 \\
\hline 1990 & 2,949.3 & 2,486.1 & 84.3\% & 2,291.5 & 614.8 & 1,676.7 \\
\hline 1995 & 3,122.9 & 2,773.6 & 88.8\% & 2,558.6 & 672.5 & 1,886.1 \\
\hline 1996 & 3,157.5 & 2,815.6 & 89.2\% & 2,600.6 & 679.2 & 1,921.4 \\
\hline 1997 & 3,194.8 & 2,855.8 & 89.4\% & 2,655.8 & 694.9 & 1,960.9 \\
\hline 1998 & 3,228.6 & 2,870.0 & 88.9\% & 2,718.0 & 713.5 & 2,004.6 \\
\hline 1999 & 3,261.0 & 2,879.0 & 88.3\% & 2,784.0 & 720.5 & 2,063.5 \\
\hline 2000 & 3,292.4 & 2,894.9 & 87.9\% & 2,833.8 & 723.0 & 2,110.8 \\
\hline 2001 & 3,332.7 & 2,897.9 & 87.0\% & 2,813.9 & 689.5 & 2,124.3 \\
\hline 2002 & 3,372.3 & 2,860.9 & 84.8\% & 2,782.4 & 656.2 & 2,125.8 \\
\hline 2003 & 3,406.3 & 2,862.6 & 84.0\% & 2,773.8 & 631.9 & 2,142.0 \\
\hline 2004 & 3,443.8 & 2,868.4 & 83.3\% & 2,804.5 & 633.3 & 2,171.2 \\
\hline 2005 & 3,487.5 & 2,890.1 & 82.9\% & 2,838.3 & 636.4 & 2,201.9 \\
\hline 2006 & 3,516.8 & 2,932.5 & 83.4\% & 2,861.5 & 637.2 & 2,224.4 \\
\hline 2007 & 3,538.8 & 2,948.7 & 83.3\% & 2,878.3 & 630.9 & 2,247.5 \\
\hline 2008 & 3,554.9 & 2,941.3 & 82.7\% & 2,871.0 & 614.7 & 2,256.3 \\
\hline \(2009{ }^{\text {r }}\) & 3,564.8 & 2,845.2 & 79.8\% & 2,744.1 & 541.1 & 2,203.0 \\
\hline 2010 \({ }^{\circ}\) & 3,570.2 & 2,823.3 & 79.1\% & 2,728.7 & 528.0 & 2,200.7 \\
\hline 2011 & 3,588.2 & 2,838.0 & 79.1\% & 2,758.6 & 540.7 & 2,217.9 \\
\hline \(2012^{p}\) & 3,584.3 & 2,850.4 & 79.5\% & 2,789.4 & 552.7 & 2,236.8 \\
\hline
\end{tabular}

\footnotetext{
a Nonfarm wage and salary employment.
b These data categories represent numbers of jobs, not numbers of individuals.
c Goods Producing is a compilation of the Mining, Natural Resources, and Construction industries.
d Services Producing is a compilation of all non-farm jobs that do not produce goods.
e Total Non-Farm job is a compilation of many non-farm job categories, which includes Goods Producing and Services Producing. p Preliminary.
r Revised.
Source: Wisconsin Department of Administration, Demographic Services Center, Single Year of Age Projections, 2000-2012, Broad Age Groups, Intercensal Revision Controlled to State Estimates (May 2012); Wisconsin Department of Workforce Development, Labor Market information Section, Current Employment Statistics (CES) http://worknet.wisconsin.gov/worknet/daces.aspx?menuselection=da (1990-2012) and Local Area Unemployment Statistics (LAUS) http://worknet.wisconsin.gov/worknet/dalaus.aspx?menuselection=da (1980-2012).
}

\section*{WISCONSIN EmpLoyment 0.4\%}

In 2012, Wisconsin's working age labor force decreased 0.1 percent. Employment in the state increased 0.4 percent (12,357 jobs). Employment in all sectors increased. In the goods producing sector, by 2.2 percent, in the services-producing sector by 0.9 percent, and by 1.1 percent in the nonfarm sector.

Most Wisconsin jobs are classified as services producing.

\section*{Wisconsin Occupied Dwelling Units, by Type of Fuel for Space Heating}

1970, 1980, 1990, 2000, 2010 AND 2012 NUMBER OF UNITS AND PERCENT OF TOTAL
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Fuel & \multicolumn{2}{|c|}{1970} & \multicolumn{2}{|c|}{1980} & \multicolumn{2}{|c|}{1990} & \multicolumn{2}{|c|}{2000} & \multicolumn{2}{|c|}{2010} & \multicolumn{2}{|c|}{2012} \\
\hline Natural Gas & 654,851 & 49.3\% & 945,092 & 57.2\% & 1,111,733 & 61.0\% & 1,384,230 & 66.4\% & 1,488,259 & 65.3\% & 1,495,819 & 65.4\% \\
\hline Fuel Oil \({ }^{\text {a }}\) & 521,256 & 39.2\% & 425,622 & 25.8\% & 265,600 & 14.6\% & 158,499 & 7.6\% & 81,908 & 3.6\% & 68,459 & 3.0\% \\
\hline LP Gas & 85,549 & 6.4\% & 130,476 & 7.9\% & 152,823 & 8.4\% & 228,408 & 11.0\% & 250,022 & 11.0\% & 245,071 & 10.7\% \\
\hline Electricity & 24,763 & 1.9\% & 101,489 & 6.1\% & 168,615 & 9.3\% & 236,755 & 11.4\% & 320,964 & 14.1\% & 343,453 & 15.0\% \\
\hline Wood & 6,795 & 0.5\% & 42,783 & 2.6\% & 107,239 & 5.9\% & 56,862 & 2.7\% & 106,608 & 4.7\% & 106,058 & 4.6\% \\
\hline Coal or Coke & 29,708 & 2.2\% & 2,591 & 0.2\% & 787 & 0.0\% & 330 & 0.0\% & 308 & 0.0\% & 205 & 0.0\% \\
\hline Solar Energy & & & N & & N & & & & 345 & 0.0\% & 584 & 0.0\% \\
\hline Other & 5,334 & 0.4\% & 3,578 & 0.2\% & 11,294 & 0.6\% & 13,839 & 0.7\% & 22,028 & 1.0\% & 20,485 & 0.9\% \\
\hline None & 548 & 0.0\% & 630 & 0.0\% & 4,027 & 0.2\% & 5,621 & 0.3\% & 9,090 & 0.4\% & 8,228 & 0.4\% \\
\hline Total \({ }^{\text {b }}\) & 1,328,804 & & 1,652,261 & & 1,822,118 & & 2,084,544 & & 2,279,532 & & 2,288,362 & \\
\hline
\end{tabular}

1970-2012 NUMBER OF UNITS

a Includes kerosene.
b Number of households data may not match due to different data sources
c Includes wood and solar energy.
d Includes coal/coke, no fuel or other fuel as defined by the American Community Survey.
Source: U.S. Department of Commerce, Bureau of the Census, Census of Housing (1970, 1980, 1990, 2000-2012) and American Community Survey (2005-2012).

\section*{Wisconsin Motor Vehicle Registrations, by Type of Vehicle}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|l|}{1970-2012} \\
\hline Year & Autos & Trucks & Buses & Motorcydes & Trailers & Totata, \({ }^{\text {a }}\) \\
\hline 1970 & 1,762,681 & 317,096 & 8,178 & 53,642 & 64,065 & 2,210,492 \\
\hline 1975 & 2,023,427 & 426,756 & 11,422 & 96,629 & 81,378 & 2,644,681 \\
\hline 1980 & 2,248,951 & 665,012 & 13,375 & 169,329 & 93,288 & 3,215,302 \\
\hline 1985 & 2,310,024 & 771,264 & 10,325 & 176,037 & 101,030 & 3,406,196 \\
\hline 1990 & 2,456,175 & 1,053,280 & 14,518 & 149,281 & 152,712 & 3,825,966 \\
\hline 1995 & 2,419,389 & 1,399,236 & 14,940 & 161,773 & 240,841 & 4,881,803 \\
\hline 1996 & 2,398,351 & 1,464,366 & 15,413 & 136,794 & 205,177 & 4,260,959 \\
\hline 1997 & 2,370,453 & 1,537,241 & 12,497 & 161,509 & 213,415 & 4,339,088 \\
\hline 1998 & 2,402,019 & 1,668,241 & 17,061 & 151,391 & 231,934 & 4,513,250 \\
\hline 1999 & 2,396,072 & 1,735,326 & 14,546 & 171,839 & 242,849 & 4,605,088 \\
\hline 2000 & 2,405,408 & 1,822,078 & 15,587 & 160,927 & 256,890 & 4,703,294 \\
\hline 2001 & 2,413,001 & 1,922,916 & 16,259 & 192,312 & 269,931 & 4,860,457 \\
\hline 2002 & 2,404,081 & 2,012,847 & 17,061 & 183,890 & 285,471 & 4,948,282 \\
\hline 2003 & 2,401,816 & 2,103,643 & 17,555 & 215,231 & 303,852 & 5,091,716 \\
\hline 2004 & 2,387,459 & 2,176,903 & 14,099 & 207,592 & 334,898 & 5,170,728 \\
\hline 2005 & 2,384,717 & 2,880,170 & 12,418 & 278,055 & 365,435 & 5,320,795 \\
\hline 2006 & 2,427,905 & 2,354,954 & 13,222 & 266,195 & 396,374 & 5,458,650 \\
\hline 2007 & 2,427,882 & 2,404,895 & 14,110 & 324,833 & 419,816 & 5,591,536 \\
\hline 2008 & 2,391,300 & 2,400,680 & 10,736 & 307,808 & 411,871 & 5,522,395 \\
\hline 2009 & 2,340,991 & 2,429,194 & 12,738 & 345,737 & 417,031 & 5,545,691 \\
\hline 2010 & 2,333,029 & 2,449,286 & 13,410 & 317,387 & 426,092 & 5,539,204 \\
\hline 2011 & 2,882,310 & 2,451,634 & 14,411 & 361,893 & 416,550 & 5,526,798 \\
\hline 2012 & 2,274,596 & 2,490,523 & 15,253 & 323,844 & 447,195 & 5,551,411 \\
\hline
\end{tabular}

\footnotetext{
a As of June 30 .
b Total includes motor homes, mopeds and municipal vehicles; it does not equal sum of registration types shown before 2005. From 2005 on, motor homes, mopeds and municipal vehicles are included in trucks, motorcycles and autos, respectively.
Source: Wisconsin Department of Transportation (January 2013).
}

TOTAL VEHICLE REGISTRATIONS 2.2\%

In 2012, total vehicle registrations increased by 2.2 percent; auto registrations increased slightly, by 0.1 percent.

The truck category includes vans, sports utility vehicles and light trucks.

\section*{These data are} provided as a factor to help compare the use of motor vehicle fuels across the years.

\section*{Wisconsin Appliance Shipments, by Type, Cooling Degree Days and Gross National Product}

The first graph plots shipments of refrigerators and washing machines against the annual percent change in the U.S. Gross Domestic Product (GDP) in constant 2005 U.S. dollars. This graph illustrates the relationship between large appliance purchases, the national economy and energy consumption.

The second graph plots appliance
shipments of room air conditioners (RACs) against Wisconsin's
Cooling Degree Days (CDDs) \({ }^{\text {a }}\) to demonstrate the relationship between appliance purchases, energy consumption and the weather.

1970-2012
\begin{tabular}{|c|c|c|c|c|c|}
\hline Year & Cooling Degree Days & Percent Change in GDP & Refrigerators & Room Air Conditioners & Washers \\
\hline 1970 & & 0.19\% & 84,180 & 62,715 & 73,666 \\
\hline 1975 & & -0.21\% & 83,658 & 31,297 & 74,547 \\
\hline 1980 & 516 & -0.28\% & 69,380 & 15,290 & 71,230 \\
\hline 1985 & 505 & 4.14\% & 89,700 & 33,100 & 80,500 \\
\hline 1990 & 599 & 1.88\% & 130,800 & 64,100 & 93,100 \\
\hline 1995 & 868 & 2.51\% & 144,300 & 65,400 & 97,800 \\
\hline 2000 & 474 & 4.14\% & 150,900 & 109,600 & 125,400 \\
\hline 2005 & 797 & 3.07\% & 167,062 & 94,773 & 148,563 \\
\hline 2006 & 648 & 2.66\% & 163,019 & 99,097 & 148,519 \\
\hline 2007 & 713 & 1.91\% & 167,234 & 134,569 & 145,139 \\
\hline 2008 & 495 & -0.34\% & 152,087 & 157,601 & 138,575 \\
\hline 2009 & 363 & -3.07\% & 142,502 & 120,597 & 132,900 \\
\hline 2010 & 778 & 2.39\% & 164,700 & 59,200 & 147,500 \\
\hline 2011 & 703 & 1.81\% & 147,200 & 70,400 & 137,300 \\
\hline 2012 & 912 & 2.21\% & 146,800 & 59,800 & 120,600 \\
\hline
\end{tabular}

a Additional information about degree days can be found at the end of this chapter.
Source: Association of Home Appliance Manufacturers, Distributor Sales by State—2012. Association of Home Appliance Manufacturers, Trends in Energy Efficiency-2012. Compiled from tables in this chapter on Cooling Degree Days and the Gross Domestic Product.

\section*{Wisconsin Degree Day Zones}

The energy needed to heat and cool homes and other buildings strongly depends on the outdoor temperature. The next few pages provide a set of tables listing typical and historic degree day figures throughout Wisconsin in eleven degree day zonesshown in the map.

Heating and cooling degree days are relative measures of outdoor air temperature, and are defined as deviations of the mean daily temperature below or above a base temperature of 65 degrees Fahrenheit. Data for this section are collected through a partnership with the Wisconsin State Climatology Office.

Heating and cooling degree days are provided as population-weighted averages for the state, to provide a point of reference for comparing the severity of winters and summers to statewide energy use.

\title{
Wisconsin Normal Heating Degree Days, by Zone and Month
}

Heating degree days are relative measurements of outdoor air temperature and are defined as deviations of the mean daily temperature below a base temperature (65 degrees Fahrenheit, by convention). For example, a weather station recording a mean daily temperature of 40 degrees Fahrenheit would report 25 heating degree days. The normal heating degree days for each zone and month are the 30 -year averages, from 1981 through 2010.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Month & Zone 1 & Zone 2 & Zone 3 & Zone 4 & Zone 5 & Zone 6 & Zone 7 & Zone 8 & Zone 9 & Zone 10 & Zone 11 & State \({ }^{\text {a }}\) \\
\hline January & 1,647 & 1,635 & 1,567 & 1,682 & 1,562 & 1,499 & 1,568 & 1,547 & 1,506 & 1,434 & 1,325 & 1,451 \\
\hline February & 1,365 & 1,372 & 1,312 & 1,361 & 1,289 & 1,251 & 1,277 & 1,263 & 1,219 & 1,173 & 1,095 & 1,195 \\
\hline March & 1,186 & 1,173 & 1,117 & 1,108 & 1,072 & 1,060 & 1,043 & 1,043 & 981 & 963 & 929 & 1,000 \\
\hline April & 762 & 697 & 667 & 632 & 604 & 637 & 576 & 586 & 557 & 558 & 588 & 597 \\
\hline May & 435 & 343 & 335 & 306 & 295 & 326 & 257 & 278 & 262 & 266 & 313 & 300 \\
\hline June & 157 & 112 & 102 & 86 & 73 & 92 & 62 & 69 & 57 & 60 & 84 & 79 \\
\hline July & 47 & 36 & 30 & 24 & 15 & 23 & 11 & 18 & 13 & 10 & 11 & 15 \\
\hline August & 66 & 56 & 48 & 47 & 34 & 40 & 28 & 36 & 28 & 27 & 15 & 28 \\
\hline September & 253 & 256 & 232 & 232 & 210 & 207 & 194 & 194 & 175 & 171 & 126 & 172 \\
\hline October & 627 & 631 & 594 & 588 & 556 & 556 & 551 & 534 & 513 & 505 & 433 & 505 \\
\hline November & 1,002 & 1,031 & 973 & 1,028 & 963 & 914 & 962 & 942 & 899 & 866 & 780 & 875 \\
\hline December & 1,486 & 1,486 & 1,418 & 1,534 & 1,433 & 1,350 & 1,430 & 1,407 & 1,364 & 1,300 & 1,195 & 1,313 \\
\hline Total & 9,033 & 8,828 & 8,392 & 8,628 & 8,106 & 7,955 & 7,959 & 7,917 & 7,574 & 7,333 & 6,894 & 7,531 \\
\hline
\end{tabular}
a Population-weighted statewide average, based on 2010 census.
Source: National Climatic Data Center, 1981-2010 U.S. Climate Normals, http://ggweather.com/normals

\section*{Wisconsin Normal Cooling Degree Days, by Zone and Month}

Cooling degree days are relative measurements of outdoor air temperature and are defined as deviations of the mean daily temperature above a base temperature (65 degrees Fahrenheit, by convention). For example, a weather station recording a mean daily temperature of 90 degrees Fahrenheit would report 25 cooling degree days. The normal cooling degree days for each zone and month are the 30 -year averages, from 1981 through 2010.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Month & Zone 1 & Zone 2 & Zone 3 & Zone 4 & Zone 5 & Zone 6 & Zone 7 & Zone 8 & Zone 9 & Zone 10 & Zone 11 & State \({ }^{\text {a }}\) \\
\hline April & 1 & 1 & 2 & 2 & 1 & 2 & 4 & 4 & 3 & 4 & 5 & 4 \\
\hline May & 9 & 14 & 15 & 17 & 18 & 16 & 28 & 26 & 22 & 26 & 25 & 23 \\
\hline June & 48 & 67 & 75 & 85 & 97 & 83 & 120 & 112 & 113 & 120 & 120 & 108 \\
\hline July & 118 & 127 & 139 & 157 & 172 & 150 & 214 & 184 & 193 & 206 & 222 & 194 \\
\hline August & 89 & 96 & 103 & 116 & 130 & 111 & 161 & 136 & 152 & 157 & 193 & 155 \\
\hline September & 22 & 25 & 29 & 31 & 35 & 33 & 48 & 44 & 48 & 51 & 69 & 51 \\
\hline October & 1 & 1 & 2 & 2 & 3 & 3 & 4 & 4 & 5 & 4 & 7 & 5 \\
\hline Total & 288 & 331 & 365 & 410 & 456 & 398 & 579 & 510 & 536 & 568 & 641 & 538 \\
\hline
\end{tabular}

\footnotetext{
Population-weighted statewide average, based on 2010 census.
Source: National Climatic Data Center, 1981-2010 U.S. Climate Normals, http://ggweather.com/normals
}

\section*{Wisconsin Population-Weighted Heating Degree Days}

\section*{1970-2012}

What significance does the number of HDDs have on energy use? Increased HDDs means that space heating is used more because the temperature is cooler. Fewer HDDs means that space heating is used less because the temperature is warmer. Fluctuations in HDDs can also influence such variables as price and volume of winter heating fuels (e.g., propane, heating oil, natural gas).

The 10-year average and 30-year normal \({ }^{\text {b }}\) are presented here as a point of reference for the variation in HDDs. The 10-year average is plotted in the middle of an 11-year period, averaging the five years previous to, and five years after, the plotted year. For example, the number plotted on the graph at 2003 is the average of 1998 through 2008. The 10-year average is not plotted for 2009 through 2012 because these averages cannot yet be calculated.

\begin{tabular}{|lrrrrrrrrrrrrr}
\hline Month & Jan. & Feb. & March & April & May & June & July & Aug. & Sept. & Oct. & Nov. & Dec. & Total \\
\hline Normal & \(\mathbf{1 , 4 5 1}\) & \(\mathbf{1 , 1 9 5}\) & \(\mathbf{1 , 0 0 0}\) & \(\mathbf{5 9 7}\) & \(\mathbf{3 0 0}\) & \(\mathbf{7 9}\) & \(\mathbf{1 5}\) & \(\mathbf{2 8}\) & \(\mathbf{1 7 2}\) & \(\mathbf{5 0 5}\) & \(\mathbf{8 7 5}\) & \(\mathbf{1 , 3 1 3}\) & \(\mathbf{7 , 5 3 1}\) \\
\hline 1970 & 1,715 & 1,292 & 1,116 & 565 & 295 & 81 & 15 & 15 & 179 & 430 & 888 & 1,343 & 7,934 \\
\hline 1975 & 1,375 & 1,246 & 1,212 & 790 & 221 & 74 & 23 & 17 & 258 & 412 & 713 & 1,268 & 7,609 \\
\hline 1980 & 1,465 & 1,378 & 1,141 & 582 & 240 & 117 & 8 & 14 & 177 & 634 & 867 & 1,345 & 7,968 \\
\hline 1985 & 1,614 & 1,296 & 883 & 474 & 189 & 107 & 7 & 32 & 194 & 486 & 993 & 1,660 & 7,935 \\
\hline 1990 & 1,141 & 1,119 & 880 & 532 & 361 & 52 & 19 & 19 & 131 & 497 & 708 & 1,321 & 6,780 \\
\hline 1995 & 1,344 & 1,197 & 890 & 682 & 254 & 38 & 8 & 1 & 213 & 455 & 1,097 & 1,375 & 7,554 \\
\hline 2000 & 1,428 & 1,057 & 759 & 626 & 245 & 86 & 26 & 15 & 189 & 384 & 909 & 1,636 & 7,360 \\
\hline 2005 & 1,436 & 1,043 & 1,073 & 491 & 331 & 20 & 9 & 12 & 75 & 425 & 811 & \(\mathbf{1 , 3 6 9}\) & 7,095 \\
\hline 2010 & 1,447 & 1,161 & 811 & 421 & 232 & 37 & 1 & 5 & 176 & 396 & 795 & 1,375 & 6,858 \\
2011 & 1,516 & 1,211 & 1,059 & 636 & 330 & 70 & 1 & 4 & 211 & 404 & 748 & 1,088 & 7,277 \\
\(\mathbf{2 0 1 2}\) & \(\mathbf{1 , 2 4 2}\) & \(\mathbf{1 , 0 3 6}\) & \(\mathbf{5 4 1}\) & \(\mathbf{5 5 0}\) & \(\mathbf{1 6 6}\) & \(\mathbf{3 6}\) & \(\mathbf{0}\) & \(\mathbf{1 7}\) & \(\mathbf{1 9 4}\) & \(\mathbf{5 3 0}\) & \(\mathbf{8 2 6}\) & \(\mathbf{1 , 1 0 3}\) & \(\mathbf{6 , 2 4 1}\) \\
\hline
\end{tabular}

\footnotetext{
a Population-weighted heating degree days are derived by multiplying the number of heating degree days in each degree day zone by the population in that degree day zone, adding the products, then dividing by the total state population (based on 2010 census data).
b The 30-year normal runs from 1981 to 2010 and is developed by the National Oceanographic and Atmospheric Agency (NOAA).
Source: Wisconsin State Energy Office, degree day data based on daily data from the University of Wisconsin-Madison, Wisconsin State Climatology Office (http://www.aos.wisc.edu/~sco/) (1970-2012) and from the National Oceanographic and Atmospheric Administration
(http://www.nws.noaa.gov/climate/) (1970-2012),
}

2012 HDD
17.1\% BELOW THE 30-YEAR NORMAL

Using populationweighted \(^{\mathrm{a}}\) heating degree days (HDDs) as an index, the winter for 2012 was warmer than the winter of 2011, with 14.2 percent fewer HDDs. In 2012, the number of HDDs \((6,241)\) was 17.1 percent below the 30-year normal \((7,531)\).

The 10-year average is plotted using HDD data from the National Climate Data Center. The NCDC revised its method of calculating HDDs, so the average is slightly different than shown in previous editions of this book.

The HDD data in this publication is weighted by population to better illustrate the connection between degree days and energy consumption.

\section*{2011 Wisconsin Heating Degree Days, by Zone and Month}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Month & Zone 1 & Zone 2 & Zone 3 & Zone 4 & Zone 5 & Zone 6 & Zone 7 & Zone 8 & Zone 9 & Zone 10 & Zone 11 & State \({ }^{\text {a }}\) \\
\hline January & 1,688 & 1,689 & 1,642 & 1,780 & 1,635 & 1,578 & 1,689 & 1,649 & 1,559 & 1,485 & 1,369 & 1,516 \\
\hline February & 1,335 & 1,349 & 1,306 & 1,392 & 1,316 & 1,253 & 1,323 & 1,298 & 1,230 & 1,193 & 1,108 & 1,211 \\
\hline March & 1,228 & 1,241 & 1,192 & 1,224 & 1,157 & 1,126 & 1,156 & 1,171 & 996 & 998 & 967 & 1,059 \\
\hline April & 746 & 797 & 747 & 671 & 703 & 679 & 636 & 693 & 565 & 572 & 613 & 636 \\
\hline May & 524 & 383 & 365 & 346 & 323 & 335 & 284 & 311 & 271 & 300 & 350 & 330 \\
\hline June & 194 & 106 & 94 & 77 & 77 & 73 & 72 & 87 & 44 & 40 & 74 & 70 \\
\hline July & 16 & 5 & 3 & 2 & 1 & 0 & 1 & 2 & 0 & 0 & 0 & 1 \\
\hline August & 19 & 49 & 29 & 12 & 3 & 3 & 3 & 6 & 1 & 0 & 0 & 4 \\
\hline September & 275 & 335 & 298 & 247 & 262 & 246 & 240 & 235 & 222 & 215 & 156 & 211 \\
\hline October & 497 & 571 & 501 & 458 & 462 & 419 & 450 & 432 & 390 & 396 & 356 & 404 \\
\hline November & 908 & 956 & 869 & 878 & 860 & 766 & 814 & 795 & 772 & 740 & 666 & 748 \\
\hline December & 1,263 & 1,362 & 1,237 & 1,299 & 1,266 & 1,106 & 1,245 & 1,161 & 1,083 & 1,052 & 974 & 1,088 \\
\hline Total & 8,693 & 8,843 & 8,283 & 8,386 & 8,065 & 7,584 & 7,913 & 7,840 & 7,133 & 6,991 & 6,633 & 7,277 \\
\hline
\end{tabular}
a Population-weighted statewide average, based on 2010 census.
Source: Wisconsin State Energy Office, degree day data based on daily data from the University of Wisconsin-Madison, State Climatology Office (http://www.aos.wisc.edu/~sco/) and from the National Oceanographic and Atmospheric Administration (http://www.nws.noaa.gov/climate/) (1970-2012).

\section*{2012 Wisconsin Heating Degree Days, by Zone and Month}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Month & Zone 1 & Zone 2 & Zone 3 & Zone 4 & Zone 5 & Zone 6 & Zone 7 & Zone 8 & Zone 9 & Zone 10 & Zone 11 & State \({ }^{\text {a }}\) \\
\hline January & 1,419 & 1,516 & 1,401 & 1,441 & 1,405 & 1,273 & 1,370 & 1,311 & 1,245 & 1,217 & 1,128 & 1,242 \\
\hline February & 1,156 & 1,285 & 1,162 & 1,167 & 1,154 & 1,031 & 1,108 & 1,054 & 1,025 & 1,021 & 974 & 1,036 \\
\hline March & 753 & 730 & 664 & 659 & 625 & 582 & 549 & 552 & 463 & 479 & 507 & 541 \\
\hline April & 706 & 703 & 638 & 588 & 584 & 556 & 524 & 568 & 466 & 509 & 551 & 550 \\
\hline May & 314 & 286 & 233 & 191 & 200 & 163 & 152 & 158 & 99 & 121 & 177 & 166 \\
\hline June & 96 & 101 & 68 & 50 & 48 & 29 & 28 & 45 & 30 & 22 & 37 & 36 \\
\hline July & 3 & 5 & 3 & 0 & 1 & 0 & 0 & 3 & 0 & 0 & 0 & 0 \\
\hline August & 56 & 105 & 67 & 42 & 36 & 13 & 25 & 32 & 16 & 17 & 0 & 17 \\
\hline September & 287 & 365 & 305 & 259 & 243 & 229 & 216 & 227 & 173 & 195 & 138 & 194 \\
\hline October & 703 & 689 & 626 & 667 & 618 & 550 & 612 & 575 & 504 & 503 & 464 & 530 \\
\hline November & 965 & 1,038 & 947 & 967 & 912 & 841 & 868 & 867 & 803 & 800 & 770 & 826 \\
\hline December & 1,323 & 1,318 & 1,224 & 1,370 & 1,268 & 1,118 & 1,306 & 1,227 & 1,172 & 1,080 & 957 & 1,103 \\
\hline Total & 7,781 & 8,141 & 7,338 & 7,401 & 7,094 & 6,385 & 6,758 & 6,619 & 5,996 & 5,964 & 5,703 & 6,241 \\
\hline
\end{tabular}

\footnotetext{
a Population-weighted statewide average, based on 2010 census.
Source: Wisconsin State Energy Office, degree day data based on daily data from the University of Wisconsin-Madison, State Climatology Office (http://www.aos.wisc.edu/~sco/) and from the
National Oceanographic and Atmospheric Administration (http://www.nws.noaa.gov/climate/) (1970-2012).
}

\section*{Wisconsin Population-Weighted Cooling Degree Days}

\section*{1980-2012}

What significance does the number of CDDs have on energy use? Increased CDDs means that air conditioning may be used more because the temperature is warmer. Fewer CDDs means that air conditioning may be used less because the temperature is cooler. Fluctuations in CDDs can also influence such variables as peak electric demand and the wholesale price of electricity.

The 10-year average and 30-year normalc are presented here as a point of reference for the variation in CDDs. The 10-year average is plotted in the middle of an 11-year period, averaging the five years previous to, and five years after, the plotted year. For example, the number plotted on the graph at 2003 is the average of 1998 through 2008. The 10-year average is not plotted for 2009 through 2012 because these averages cannot yet be calculated.

The 10-year average is plotted using CDD data from the National Climate Data Center. The NCDC revised its method of calculating CDDs, so the average is slightly different than shown in previous editions of this book.

\footnotetext{
a Population-weighted cooling degree days are derived by multiplying the number of cooling degree days in each degree day zone by the population in that degree day zone, adding the products, then dividing by the total state population (based on 2010 census data).
b Includes March for the years 2001 and 2007. For 1990, the October column also includes November.
c The 30-year normal runs from 1981 to 2010 and is developed by the National Oceanographic and Atmospheric Agency (NOAA).
Source: Wisconsin State Energy Office, degree day data based on daily data from the University of Wisconsin-Madison, State Climatology Office (http://www.aos.wisc.edu/~sco/) (1970-2012) and from the National Oceanographic and Atmospheric Administration
(http://www.nws.noaa.gov/climate/) (1970-2012),
}

2012 CDD
69.4\% above THE 30-YEAR NORMAL

Using populationweighted \({ }^{\text {a }}\) cooling degree days (CDD) as an index, the summer of 2012 was warmer than the summer of 2011, with 29.7 percent more cooling degree days. In 2012, the number of cooling degree days (912) was 69.4 percent above the 30-year normal (538).

The CDD data in this publication is weighted by population to better illustrate the connection between degree days and energy consumption.

In 2012, the number of CDDs increased because the summer was warmer than 2011. 2008 and 2009 represented a slight departure from a trend since 2005 of hotter summers with more CDDs.

\section*{2011 Wisconsin Cooling Degree Days, by Zone and Month}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Month & Zone 1 & Zone 2 & Zone 3 & Zone 4 & Zone 5 & Zone 6 & Zone 7 & Zone 8 & Zone 9 & Zone 10 & Zone 11 & State \({ }^{\text {a }}\) \\
\hline January & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline February & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline March & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline April & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\
\hline May & 0 & 6 & 15 & 9 & 14 & 22 & 16 & 18 & 51 & 46 & 28 & 27 \\
\hline June & 16 & 55 & 69 & 63 & 87 & 71 & 115 & 89 & 139 & 145 & 84 & 94 \\
\hline July & 221 & 256 & 297 & 271 & 277 & 320 & 306 & 301 & 355 & 368 & 364 & 336 \\
\hline August & 112 & 46 & 98 & 112 & 151 & 139 & 150 & 159 & 199 & 200 & 247 & 188 \\
\hline September & 20 & 16 & 25 & 40 & 42 & 33 & 50 & 44 & 46 & 44 & 62 & 48 \\
\hline October & 16 & 4 & 7 & 21 & 6 & 6 & 18 & 15 & 13 & 10 & 7 & 9 \\
\hline November & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline December & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Total & 385 & 383 & 511 & 516 & 577 & 591 & 655 & 626 & 803 & 814 & 793 & 703 \\
\hline
\end{tabular}
a Population-weighted statewide average, based on 2010 census.
Source: Wisconsin State Energy Office, degree day data based on daily data from the University of Wisconsin-Madison, State Climatology Office (http://www.aos.wisc.edu/~sco/) and from the National Oceanographic and Atmospheric Administration (http://www.nws.noaa.gov/climate/) (1970-2012).

\section*{2012 Wisconsin Cooling Degree Days, by Zone and Month}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Month & Zone 1 & Zone 2 & Zone 3 & Zone 4 & Zone 5 & Zone 6 & Zone 7 & Zone 8 & Zone 9 & Zone 10 & Zone 11 & State \({ }^{\text {a }}\) \\
\hline January & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline February & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline March & 17 & 2 & 8 & 7 & 4 & 12 & 14 & 20 & 27 & 26 & 11 & 14 \\
\hline April & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\
\hline May & 22 & 12 & 36 & 42 & 33 & 51 & 56 & 67 & 86 & 81 & 59 & 59 \\
\hline June & 74 & 73 & 143 & 98 & 118 & 199 & 166 & 160 & 207 & 228 & 235 & 200 \\
\hline July & 199 & 170 & 270 & 298 & 312 & 352 & 378 & 391 & 441 & 455 & 428 & 393 \\
\hline August & 96 & 48 & 96 & 131 & 120 & 131 & 159 & 176 & 212 & 202 & 237 & 185 \\
\hline September & 26 & 20 & 35 & 47 & 37 & 41 & 57 & 59 & 75 & 72 & 70 & 59 \\
\hline October & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 5 & 3 & 0 & 1 \\
\hline November & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline December & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Total & 434 & 325 & 588 & 623 & 624 & 786 & 830 & 874 & 1,053 & 1,068 & 1,041 & 912 \\
\hline
\end{tabular}

\section*{Energy Definitions}

\section*{DEFINITIONS}

Energy is the ability to do work. It is stored in various forms including chemical energy in biomass, coal and oil, nuclear energy in uranium, gravitational energy in water used in hydroelectric plants, the wind and the sun.

There are two common ways to account for energy use; resource energy consumption and end-use energy consumption. End-use refers to the energy content of electricity and other fuels at the point of use by customers. Resource energy includes all energy resources used to generate electricity, including the energy content of the coal, petroleum, nuclear and renewable fuels.

One British thermal unit (Btu) is the amount of energy in the form of heat which will raise the temperature of one pound of water one degree Fahrenheit.

One calorie is the amount of energy in the form of heat which will raise the temperature of one gram of water one degree Centigrade.

One Btu is equal to 252 calories.

One watt is a unit of power, or rate of energy delivery, of one joule per second, or equivalently, one ampere of electric current delivered across a potential of one volt. One kilowatt (kW) is 1,000 watts. Ten 100 -watt light bulbs require 1,000 watts or 1 kW of power to stay lit at any point in time.

One kilowatt-hour (kWh) is one kilowatt of electric power delivered for one hour (or the equivalent). One kilowatt-hour is 1,000 watt-hours. Ten 100-watt light bulbs burning for one hour consume 1,000 watt-hours or 1 kWh .

Heating degree days are relative measurements of outdoor air temperature and are obtained by subtracting the mean daily temperature from an established base temperature of 65 degrees Fahrenheit.

Cooling degree days are relative measurements of outdoor air temperature and are obtained by subtracting an established base temperature of 65 degrees Fahrenheit from the mean daily temperature.

\section*{MEASUREMENT OF ENERGY SUPPLIES}

Petroleum products are measured in either gallons or barrels. A barrel contains 42 gallons. Petroleum is refined from crude oil into various products such as kerosene, diesel fuel, home heating oil (No. 1 and No. 2 oils), and other heating oils (No. 3 - No. 6), gasoline and liquefied petroleum gas (propane). The energy content of a gallon of each product is listed in the conversion table.

Natural Gas is measured in either Mcf (1,000 cubic feet) or in therms. One Mcf contains approximately ten therms or one million Btu.

Coal is measured in tons. The three broad classifications of coal, in order of greatest energy content, are bituminous, sub-bituminous and lignite.

Wood is usually measured in either tons or cords. A cord is an amount of stacked wood measuring 8 feet \(\times 4\) feet \(\times 4\) feet. The weight of a cord of wood varies according to the type of wood and its moisture content, but is estimated at 1.5 to 2 tons. A face cord is the 8 feet \(\times 4\) feet face of a stacked cord but of shorter width. Common usage is three face cords to a full cord.

\section*{Conversion Factors}
\begin{tabular}{|c|c|}
\hline 1 kilowatt-hour of electricity & 3,413 Btu \\
\hline 1 cubic foot of natural gas & 1,008 to 1,034 Btu \\
\hline 1 therm of natural gas & 100,000 Btu \\
\hline 1 gallon of liquefied petroleum gas (LPG) & 95,475 Btu \\
\hline 1 gallon of crude oil & 138,095 Btu \\
\hline 1 barrel of crude oil & 5,800,000 Btu \\
\hline 1 gallon of kerosene or light distillate oil & 135,000 Btu \\
\hline 1 gallon of middle distillate or diesel fuel oil & 138,690 Btu \\
\hline 1 gallon of residual fuel oil & 149,690 Btu \\
\hline 1 gallon of gasoline & 125,000 Btu \\
\hline 1 gallon of ethanol & \(84,400 \mathrm{Btu}\) \\
\hline 1 gallon of methanol & 62,800 Btu \\
\hline 1 gallon of gasohol (10\% ethanol, \(90 \%\) gasoline) & 120,900 Btu \\
\hline 1 pound of coal & 8,100 to 13,000 Btu \\
\hline 1 ton of coal & 16,200,000 to 26,000,000 Btu \\
\hline 1 ton of coke & 26,000,000 Btu \\
\hline 1 ton of wood & 9,000,000 to 12,000,000 Btu \\
\hline 1 standard cord of wood & 18,000,000 to 24,000,000 Btu \\
\hline 1 face cord of wood & 6,000,000 to 8,000,000 Btu \\
\hline 1 pound of low pressure steam (recoverable heat) & 1,000 Btu \\
\hline
\end{tabular}

\section*{MEASUREMENT CONVERSIONS}

1 short ton (ton) \(=2,000\) pounds \(=6.65\) barrels (crude oil)
1 metric ton (tonn) \(=2,200\) pounds
1 barrel \((\mathrm{bbl})=42\) gallons \(=5.615\) cubic feet \(=159.0\) liters
\(1 \mathrm{Mcf}=1,000\) cubic feet
1 therm \(=10^{5} \mathrm{Btu}=100,000 \mathrm{Btu}\)
1 thousand Btu (KBtu) \(=1,000 \mathrm{Btu}\)
1 million Btu \((\mathrm{MMBtu})=1,000,000 \mathrm{Btu}\)
1 quad \(=10^{15}\) (quadrillion) Btu or \(1,000,000,000 \mathrm{MMBtu}\)
1 kilowatt-hour \((\mathrm{kWh})=1,000\) watt-hours
1 megawatt-hour \((\mathrm{MWh})=1,000 \mathrm{kWh}\) or \(1,000,000\) watt-hours
1 gigawatt-hour \((G W h)=1,000 \mathrm{MWh}\)
or 1,000,000,000 watt-hours
1 gallon \(=4.524\) pounds liquefied petroleum gas
1 standard cord of wood \(=8\) feet \(\times 4\) feet \(\times 4\) feet \(=128\) cubic feet \(=\) approx. 3,000-4,000 lbs.

1 face cord of wood \(=8\) feet \(\times 4\) feet \(\times 16\) inches \(=42.7\) cubic feet = approx. 1,333 lbs.

\section*{Wisconsin Petroleum Pipelines}

Source: Wisconsin State Energy Office.

\section*{Wisconsin Natural Gas Utility Service Territories and Major Pipelines}

\section*{Wisconsin Electric Generating Facilities Over 100 Megawatts and Electric Transmission Lines}

230 kV AND HIGHER

\section*{Major Electric Service Territories}

Source: Public Service Commission of Wisconsin.

\section*{Hydroelectric Generation Sites in Wisconsin, 2013}

a Capacity and energy generated include hydroelectric facilities owned by utilities, merchants, cooperatives, and other nonutilities.
Capacity and Energy Data Source: Public Service Commission of Wisconsin.
Hydroelectric Facility GIS Data Source: Public Service Commission of Wisconsin, Department of Administration.

\section*{Estimated Wind Power Energy Potential (at 70 meters) and Existing Wind Development Locations, 2013}

\section*{Biomass Resources Available in the United States}

Based on the map titled "Biomass Resources Available in the United States," distributed by the National Renewable Energy Laboratory (NREL), http://www.nrel.gov/.
GIS Data Source: http://www.nrel.gov/.
GIS Data Metadata: None available.
Notes from the original NREL map: This study estimates the technical biomass resources currently available in the United States by county. It includes the following feedstock categories:
- Agricultural residues (crops and animal manure)
- Wood residues (forest, primary mill, secondary mill, and urban wood).
- Municipal discards (methane emissions from landfills and domestic wastewater treatment)
- Dedicated energy crops (on Conservation Reserve Program and Abandoned Mine Lands).

\section*{Estimated Solar Insulation for the United States, Two-Axis Tracker}
```


[^0]:    Source: Wisconsin State Energy Office.

[^1]:    Source: Wisconsin State Energy Office.

[^2]:    Source: Wisconsin State Energy Office

[^3]:    Source: Wisconsin State Energy Office.

[^4]:    Source: Wisconsin State Energy Office

[^5]:    Source: Wisconsin State Energy Office.

[^6]:    Source: Wisconsin State Energy Office.

[^7]:    Source: Wisconsin State Energy Office.

[^8]:    a "Electric imports" is the estimated resource energy used in other states or Canada to produce the electricity imported into Wisconsin. This resource energy is estimated assuming 11,300 Btu of resource energy per kWh imported into Wisconsin. Values below the " 0 " indicate that resource energy was used in Wisconsin to produce electricity that was exported out of state.
    Source: Wisconsin State Energy Office

[^9]:    a Beginning in 2005, the Wisconsin SEO discontinued a per-acre approach to gathering fuel data for the agriculture sector and substituted data from the Wisconsin Department of Revenue and from the federal National Agriculture Statistics Service (NASS). Data from NASS were not available previously.
    p Preliminary estimates.
    r Revised due to revisions in contributing tables.
    Source: Compiled from tables in this publication for Wisconsin petroleum, natural gas, coal, renewable energy and electricity use, by economic sector, and for Wisconsin electric utility energy use.

[^10]:    p Preliminary estimates.
    r Revised due to revisions in contributing tables.
    Source: Compiled from tables in this publication for Wisconsin petroleum, natural gas, coal, renewable and electricity use, by economic sector, and for Wisconsin electric utility energy use.

[^11]:    a Renewables includes wood/biomass, solar photovoltaic and solar thermal, wind and biogas.
    b Includes energy resources (and losses) attributable to electricity generation.
    c Changes in petroleum consumption figures are due in-part to a historical revision of propane consumption data. The propane dataset was revised to bring it in line with federal volumes.
    p Preliminary estimates.
    r Revised due to revisions in contributing tables.
    Source: Compiled from tables in this publication for Wisconsin petroleum, natural gas, coal, renewables and electricity use, by economic sector, and for Wisconsin electric utility energy use.

[^12]:    a Kerosene, No. 1 and No. 2 fuel oil used for heating and processing, jet fuel and aviation gasoline used for flying. Does not include non-taxed diesel fuel used on farms. Italicized figures indicate that some data were withheld by the federal Energy Information Administration to protect confidential reporter data.
    b On-road diesel fuel sales in Wisconsin
    c Liquefied petroleum gas (propane) deliveries.
    d Vehicle gasoline sales; does not include aviation gasoline or ethanol.
    Source: Wisconsin Department of Revenue, Monthly Motor Fuel Consumption Report (2012); U.S. Department of Energy, Form EIA-782C,
    "Monthly Report of Petroleum Products Sold into States for Consumption" (2012)
    http://www.eia.gov/oil_gas/petroleum/data_publications/prime_supplier_report/psr.html.

[^13]:    a RFG is reformulated gasoline. Starting January 1, 1995, the federal government mandated its sale in six southeastern Wisconsin counties to comply with the Clean Air Act. Ethanol is used to provide the oxygenate required in RFG.
    b E10 is a motor fuel blend consisting of 10 percent ethanol and 90 percent conventional gasoline (non RFG)
    c E85 is a motor fuel consisting of 85 percent ethanol and 15 percent conventional gasoline (non RFG).
    p Preliminary.
    NA - Not Available.
    Source: Wisconsin Department of Revenue; Wisconsin State Energy Office survey of E85 distributors (2002-2012); U.S. Department of Energy, Form EIA-782C, Monthly Report of Petroleum Products Sold into States for Consumption (1995-2012)
    http://www.eia.gov/oil_gas/petroleum/data_publications/prime_supplier_report/psr.html.

[^14]:    a Starting with 2005 data, the SEO discontinued a per-acre approach to gathering fuel data for the agriculture sector and substituted data from the Wisconsin Department of Revenue and from the federal National Agriculture Statistics Service (NASS)
    p Preliminary estimates.
    r Revised.
    NA - Not available
    Source: U.S. Department of Energy, Form EIA-25, Prime Supplier's Monthly Report (1974-2012) and Form EIA-782C, Monthly Report of Petroleum Products Sold into States for Consumption (1983-2012) http://www.eia.gov/oil_gas/petroleum/data_publications/prime_supplier_report/psr.html; National Agricultural Statistics Service, unpublished data (2005-2012); Wisconsin Department of Revenue, Monthly Motor Fuel Consumption Report (2008-2012); Wisconsin Department of Natural Resources, Annual Survey of Point Source Emissions for propane, unpublished (1995-2012).

[^15]:    a Includes sales to government agencies and other public authorities for general or institutional purposes and vehicle fuel, classified as "other" sales by the American Gas Association.
    b Includes gas used in electric power generation by utilities and independent power producers.
    c Data on agricultural use of natural gas became available in 2005 .
    d Includes compressed (CNG) and liquified (LNG) natural gas used for vehicle fuel.
    p Preliminary estimates.
    $\mathbf{r}$ Revised using final annual data from the federal Energy Information Administration.
    Source: American Gas Association, Gas Facts (1961-1997); Public Service Commission of Wisconsin, Accounts and Finance Division, Statistics of Wisconsin Public Utilities, Bulletin \#8 (1963-1989); Public Service Commission of Wisconsin, Operating Revenue and Expense Statistics; Class A and B Utilities in Wisconsin (1990-1993), form PSC-AF 2 Gas Sales and Sales Ratio (1994-2007) and discussions with Public Service Commission staff; U.S. Department of Energy, Natural Gas Annual, 1991-2011 [DOE/EIA-0131(11)] (March 2013) and Natural Gas Monthly [DOE/EIA-0130 (2013/03)] (March 2013) http://www.eia.gov/naturalgas/monthly/. http://www.eia.gov/naturalgas/annual/; U.S. Department of Agriculture/ National Agriculture Statistics Service, unpublished data (2005-2012); Wisconsin Department of Revenue Fuel Tax Statistical Reports (1996-2012).

[^16]:    a Firm service guarantees no interruptions.
    b Interruptible service permits interruption on short notice, generally in peak-load seasons.
    c Includes gas used by the gas utility and transport gas.
    d Totals given here may differ from other tables due to different sources
    p Preliminary estimates.
    Source: Public Service Commission of Wisconsin, Accounts and Finance Division, Statistics of Wisconsin Public Utilities, Bulletin \#8 (1963-1989),
    Operating Revenue and Expense Statistics; Class A and B Utilities in Wisconsin (1990-1993), and form PSC-AF 2 (1994-2012)

[^17]:    a Totals given here may differ from other tables due to different sources.
    p Preliminary estimates.
    Source: Wisconsin natural gas utility monthly AF2 reports submitted to the Public Service Commission of Wisconsin (1976-2012), docket number 05-GF-159. http://PSC.wi.gov/apps40/dockets/default.aspx

[^18]:    ## p Preliminary estimates.

    Source: Public Service Commission of Wisconsin, Accounts and Finance Division, Statistics of Wisconsin Public Utilities, Bulletin \#8 (1963-1989), Operating Revenue and Expense Statistics; Class A and B Utilities in Wisconsin (1990-1993), and form PSC-AF 2 Gas Sales and Sales Ratio (1994-2012), U.S. Department of Energy, Natural Gas Annual, 1991-2012 [DOE/EIA-0131(12)] (March 2012). Http://www.eia.gov/naturalgas/annual/.

[^19]:    a Space heating categories are adjusted to reflect demand under average heating degree days (HDDs). In the residential category, annual consumption per heating degree day was multiplied by the 1981-2010 30-year normal of 7,531 HDDs. In the commercial category, the space heating use was adjusted the same way
    p Preliminary estimates.
    Source: Public Service Commission of Wisconsin, Statistics of Wisconsin Public Utilities, Bulletin \#8 (1963-1989), Operating Revenue and Expense Statistics; Class A and B Utilities in Wisconsin (1990-1993), and form PSC-AF 2 (1990-2012).

[^20]:    a Includes petroleum coke co-fired with coal.
    $\mathbf{b}$ The totals do not always match the sum of the individual plants in this table. The totals are drawn from the federal Energy Information Administration, while the plant-specific data comes from the Wisconsin Department of Natural Resources emissions data. Starting in 2008, the totals reflect the WI DNR data.
    p Preliminary estimates.
    Source: Wisconsin Department of Natural Resources, Annual Survey of Point Source Emissions, unpublished (1975-2012); annual reports of various
    Wisconsin electric generating utilities (1995-2012); U.S. Department of Energy, Electric Power Monthly [DOE/EIA-0226 (2012/03)](March 2012).

[^21]:    a Includes shipments to Wisconsin end users and dealers. Does not include deliveries to Superior Midwest Energy Terminal for trans-shipment from Wisconsin.
    p Preliminary.
    Source: U.S. Bureau of Mines, "Bituminous Coal and Lignite Distribution", Mineral Industry Surveys (1973-1976); U.S. Department of Energy, Energy Information Administration, Bituminous and Subbituminous Coal and Lignite Distribution (1977-1979), Coal Industry Annual [DOE/EIA-0584](2000), Coal Distribution [DOE/EIA-0125 (99/4Q)] (1980-1999), Quarterly Coal Report [DOE/EIA - 0121 (2012/4Q)] (March 2013), www.eia.gov/coal/distribution/ quarterly and www.eia.gov/coal/distribution/annual

[^22]:    a Total data reported in this table may differ from other tables because of different sources. Subtotals may not add due to rounding. p Preliminary.
    Source: U.S. Bureau of Mines, "Bituminous Coal and Lignite Distribution", Mineral Industry Surveys (1973-1976); U.S. Department of Energy, Energy Information Administration, Bituminous and Subbituminous Coal and Lignite Distribution (1977-1979), Coal Industry Annual [DOE/EIA - 0584] (2000), Coal Distribution [DOE/EIA-0125 (99/4Q)] (1980-1999) and Quarterly Coal Report [DOA/EIA-0121 (2012/4Q)] (March 2013),
    www.eia.gov/coal/distribution/quarterly and www.eia.gov/coal/distribution/annual

[^23]:    Colorado.

[^24]:    a Beginning in 1989, U.S. DOE data sources have been used
    p Preliminary estimates.
    r Revised
    Source: Public Service Commission of Wisconsin, Accounts and Finance Division, Statistics of Wisconsin Public Utilities, Bulletin \#8, Table 5 (1970-1994); U.S. Department of Agriculture, Rural Electrification Administration, Annual Statistical Report, REA Bulletin 1-1, Table 31 (1970-1994); U.S. Department of Energy, Electric Sales and Revenue 1989-2000 [DOE/EIA-0540 (2000)] (November 2001), and Electric Power Monthly [DOE/EIA-0226 (2013/05)] (May 2013) (1989-2012). www.eia.gov/electricity/monthly/index.cfm

[^25]:    a Wisconsin Electric Power Co., Wisconsin Power and Light Co., Wisconsin Public Service Corp., and Madison Gas and Electric Co.
    b Non-coincident peak demand is the sum of the individual monthly peak electric demands from the four utilities listed above for each month
    Source: Wisconsin electric utility annual reports submitted to the Public Service Commission of Wisconsin (2013).
    www.psc.wi.gov/apps40/annlreport/default.aspx

[^26]:    a IPPs are independent power producers allowed under law to sell their power to wholesalers such as utility cooperatives. They are barred from selling their power on the retail market
    b Non-utility sources refers to industrial power producers such as paper mills.
    c Utilities include investor-owned utilities, electric cooperatives and municipalities.
    e Estimate.
    Source: Public Service Commission of Wisconsin, Accounts and Finance Division, Generating Plants Operated by Wisconsin Electric Utilities, Bulletin \#46 (1971-1994) and personal communications 2002; U.S. Department of Agriculture, Rural Electrification Administration, Annual Statistical Report, REA Bulletin 1-1 (1971-1994); Public Service Commission of Wisconsin, unpublished electrical capacity data (1990-2012).

[^27]:    a Imports and losses is a reflection of the difference between total sales recorded by EIA and total generation. A negative sign indicates Wisconsin utilities exported electric power to other states.
    b Non-utility generation sources were available prior to 2005, but not collected separately until then.
    c The renewables category includes biomass, methane from landfills and digesters, solar and wind resources.
    d All nuclear reactors located in Wisconsin are owned by Independent Power Producers.
    e Sales figures for all years are from the EIA Electric Power Monthly.
    p Preliminary.
    r Revised.
    Source: Public Service Commission of Wisconsin, Accounts and Finance Division, Generating Plants Operated by Wisconsin Electric Utilities, Bulletin \#46 (1971-1994) and personal communications 2002; U.S. Department of Agriculture, Rural Electrification Administration, Annual Statistical Report, REA Bulletin 1-1 (1971-1994); U.S. Department of Energy, Energy Information Administration, Electric Power Monthly [DOE/EIA-0226 (2012/05)] (May 2012) (1990-2006); Public Service Commission of Wisconsin, unpublished electrical generation data (2007-2012).

[^28]:    a Internal combustion includes both gas powered turbines and diesel powered engines.
    b Nuclear reactors in Wisconsin are owned by independent power producers.
    e Estimate by Wisconsin State Energy Office based on amount of generation by the five major Wisconsin utilities.
    NA - Not available.
    Source: Public Service Commission of Wisconsin, Accounts and Finance Division, Generating Plants Operated by Wisconsin Electric Utilities, Bulletin \#46 (1971-1994); annual reports of the five major Wisconsin electric generating utilities (1990-2012). www.psc.wi.gov/apps40/annlreport/default.aspx

[^29]:    p Preliminary estimates.
    r Revised.
    Source: Wisconsin Department of Natural Resources, Annual Survey of Point Source Emissions, Sulfur Dioxide and Nitrogen Oxides Emissions Report PUBL-AM-343 and published by facility on the Wisconsin Department of Natural Resources website at http://dnr.wi.gov/topic/AirEmissions/
    (1986-2012).

[^30]:    This is not a comprehensive listing of all utility or independent power producer generation plants. Does not include out-of-state sites or non-utility generation.
    b Hydroelectric capacity differs from sums on other tables due to different data sources.
    c RDF is Refuse Derived Fuel.
    d The Weston 4 unit is owned by Wisconsin Public Service Corp. (70\%) and Dairyland Power Cooperative (30\%).
    e The Columbia 1 and 2 units are owned by Alliant Energy (46.2\%), Wisconsin Public Service Corp. (31.8\%) and Madison Gas \& Electric Co.(22.0\%).
    f The Edgewater 4 unit is owned by Alliant Energy (68.2\%) and Wisconsin Public Service Corp.(31.8\%). g LFG is Landfill Gas.

[^31]:    a In 2007 these figures were revised from previous versions of this publication to remove resources that are not considered renewable under Wisconsin law (e.g., municipal solid waste or refuse derived fuels).
    p Preliminary estimates.
    Source: Public Service Commission of Wisconsin, unpublished data compiled from annual reports (2007-2012); Focus on Energy aggregated and verified savings data (2005-2012); survey data from conversations and emails with utilities, independent operators of landfills and/or waste water treatment plants, and public schools (2007-2012); Department of Revenue Monthly Motor Fuel Consumption Report (2000-2012); Energy Center of Wisconsin Wisconsin Agricultural Biogas Casebook (2008).

[^32]:    a Revisions to the residential sector wood-burn estimates are due to corrections of adjusted pricing figures.
    b Commercial sector figures are revised to reflect data incorrectly assigned to the electric production sector which are now correctly categorized with wood/biomass for non-electric production.
    p Preliminary estimates.
    r Revised.
    Source: U.S. Department of Energy, Energy Information Administration, Estimates of U.S. Wood Energy Consumption from 1949 to 1981 (August 1983); Wisconsin Department of Natural Resources, Annual Survey of Point Source Emissions, unpublished (1972-2012); USDA Forest Service, Residential Fuelwood Consumption and Production in Wisconsin (1994); Wisconsin Department of Administration, Division of Energy, "Wisconsin Residential Wood Energy Model," unpublished (1981-2012), and Directory of Wisconsin Wood Burning Facilities (1995).

[^33]:    a Gross heating values of wood range from 8 MMBtu per ton to 17 MMBtu per ton, due in part to differences in moisture content. In this table, 11.3 MMBtu per ton is used, based on estimates of moisture content and type of wood used in Wisconsin.
    b Drops in Paper and Allied values beginning in 2008 is due to the removal of tonnage associated with electrical generation. p Preliminary.
    Source: Estimates by the Wisconsin State Energy Office, based on Wisconsin Department of Natural Resources, Annual Survey of Point Source Emissions, unpublished (1972-2012); Employment Research Associates, Biomass Resources: Generating Jobs and Energy, Technical Papers (January 1986); Department of Administration, Division of Energy, Directory of Wisconsin Wood Burning Facilities (1995).

[^34]:    a Wind generation figures shows for Wisconsin in this table will differ from wind generation figures elsewhere in this publication due to different data sources.
    Source: U.S. Department of Energy, Energy Information Administration, State Energy Consumption Estimates,1960-2012; [DOE/EIA-0214 (2012/06)], June 2013 (2000-2012), Table CT8, http://www.eia.gov/state/seds

[^35]:    a Total shipments in the table represent shipment from outside and within the United States, and do not include export shipments to other counties.
    b Revisions to these data reflect the shipment of modules only, and do not include cells.
    p Preliminary.
    r Revised.
    Source: U.S. Department of Energy, Energy Information Administration, Annual Energy Review [DOE/EIA-0384(2011) (September 2012)], table 10.8 (2011) www.eia.doe.gov/totalenergy/data/annual; U.S. Department of Energy, Energy Information Administration, December 2009, Form EIA-63B, Annual Photovoltaic Module/Cell Manufacturers Survey, Table 3.8, "Average Energy Conversion Efficiency of Photovoltaic Cells and Modules Shipped", 2007-2012 (2013).

[^36]:    a Nominal dollars represent the prices during the year cited, they are not adjusted for inflation.
    b 2012 prices indicate the price adjusted for inflation.
    p Preliminary estimates.
    Source: U.S. Department of Energy, Energy Information Administration, Annual Energy Review [DOE/EIA-0384(2011) (August 2012)], table 10.8 (2011) www.eia.doe.gov/aer; U.S. Department of Energy, Energy Information Administration, December 2009, Form EIA-63B, Annual Photovoltaic Module/Cell Manufacturers Survey, Table 3.8,"Average Energy Conversion Efficiency of Photovoltaic Cells and Modules Shipped", 2007-2012 (2013).

[^37]:    a Manufacturing Value Added and Gross State Product in 2009 dollars, deflated with Gross Domestic Product Implicit Price Deflator.
    b Not adjusted for yearly variations in temperature.
    c Value added data for Wisconsin not available. Value added estimated using U.S. and Wisconsin trends.
    d Per Employee Data not available prior to 1990 due to change in coding from SIC to NAICS.
    p Preliminary data.
    Source: Wisconsin Department of Workforce Development employment data, http://worknet.wisconsin.gov/worknet/dalaus.aspx?menuselection=da; U.S. Department of Commerce, Annual Survey and Census of Manufacturers http://www.census.gov/mcd/asm-as3.html (1972-2012); Wisconsin Department of Agriculture, Trade and Consumer Protection, Wisconsin's Agricultural Statistics, 2012; other tables in this publication used for household estimates, gross state product, total resource energy use and use by sector.

[^38]:    a All data, except commercial employment data, normalized to 1.0 in 1970, an arbitrary baseline to which all other years can be compared. Commercial employment data normalized to 1990, when industrial codes changed from SIC to NAICS.
    Source: Wisconsin State Energy Office.

[^39]:    a All data, except commercial employment data, normalized to 1.0 in 1970, an arbitrary baseline to which all other years can be compared.
    Commercial employment data normalized to 1990, when industrial codes changed from SIC to NAICS.
    p Preliminary estimate.
    Revised

[^40]:    a Statewide sector sales are estimated for the non-annual reporting periods using annual data from the Wisconsin Electric Utility Sales, by Economic Sector table in Chapter Two of this publication.
    b Statewide sector sales are estimated for the non-annual reporting periods using annual data from the Wisconsin Natural Gas Use, by Economic Sector table in Chapter Two of this publication. Data from this chapter are converted from tBtus to Therms for the purpose of calculation.
    c Annual, first-year energy savings are what an energy saving measure accomplished during the first year, as opposed to lifetime savings. Source: Public Service Commission of Wisconsin, Focus on Energy Evaluation Report 2012, April 30, 2013;
    https://focusonenergy.com/about/evaluation-reports

[^41]:    a Electronically commutative motors (ECM) differ from conventional motors in their overall efficiency.
    b Hot water refers to a variety of different measures to improve hot water heating and usage efficiency.
    c Lighting improvements such as efficient lighting fixtures, torchieres, and ceiling fans, and motion/occupancy sensors.
    d Other includes a wide variety of improvements.
    e Recovery of exhaust heat from natural gas combustion.
    f Process efforts include in-line energy efficiency and heat capture, primarily in industrial applications. May also include efficiency improvements to compressed air usage.
    g Steam trap improvement to avoid loss of thermal energy
    h This category was previously named "clothes washer." Focus changed the name in order to more accurately represent the savings measure.
    Source: Public Service Commission of Wisconsin, Focus on Energy Evaluation Report 2012, April 30, 2013;
    https://focusonenergy.com/about/evaluation-reports

[^42]:    a Wisconsin and U.S. figures come from different sources and may not be directly comparable.
    b Light duty vehicles with a short wheel base are passenger vehicles including passenger cars, light trucks, vans and sport utility vehicles, all with a wheel base of less than 122 inches
    p Preliminary estimates.
    r Revised.
    Source: Wisconsin Department of Transportation, Division of Planning and Budget, Bureau of Policy Planning and Analysis, personal communication (1993); U.S. Department of Energy, Energy Information Administration, Monthly Energy Review, table 1.8 [DOE/EIA-0035 (2013/03)] (March 2013) http://www.eia.gov/totalenergy/data/monthly.

[^43]:    p Preliminary.
    Source: U.S. Department of Energy, Energy Information Administration, Natural Gas Gross Withdrawals and Production,
    http://www.eia.gov/dnav/ng/ng_prod_sum_dcu_NUS_a.htm (April 2014).

[^44]:    a Res. \& Com. represents residential and commercial.
    p Preliminary.
    r Revised.
    Source: U.S. Department of Energy, Energy Information Administration, Monthly Energy Review, Table 6.1 and 6.2 [DOE/EIA-0035 (2013/03)]
    (March 2013). http://www.eia.gov/totalenergy/data/monthly/

[^45]:    To allow a more direct comparison with Wisconsin data, this figure excludes asphalt, road oil, lubricants, waxes, petroleum feedstocks and other petroleum products not used as energy sources.
    b Renewables includes biomass, hydro power, wood, solar, wind and geothermal.
    p Preliminary.
    r Revised.
    Source: U.S. Department of Energy, Energy Information Administration, Monthly Energy Review [DOE/EIA-0035 (2013/03)] (March 2013) Table 3.6. http://www.eia.doe.gov/emeu/mer. Annual data in Annual Energy Review, Tables 1.3 and 5.12 [DOE/EIA-0384 (2012)] (September 2012) http://www.eia.doe/gov/emeu/aer. U.S. Census Bureau, Population Division, Release 3/2012, Table 1: Preliminary Annual Estimate of the Resident Population of the United States. http://www.census.gov/popest/eval-estimates/eval-est2010.html

[^46]:    a This list excludes asphalt, road oil, lubricants, waxes, petroleum feedstocks and other petroleum products not used as energy sources.
    b Renewables includes biomass, biogas, hydro power, wood, solar and wind.
    p Preliminary estimates.
    Source: Compiled from tables in this publication for United States and Wisconsin per capita resource energy use.

[^47]:    a Data reported in this table may differ from other tables because of different sources.
    Source: U.S. Department of Energy, Energy Information Administration, State Energy Data 2010: Consumption, Table C10.
    http://www.eia.doe.gov/state/seds/sep_use/notes/use_print2011.pdf

[^48]:    a Gross Domestic Product is calculated using available data from the Energy Information Administration, International Energy Statistics data
    Source: U.S. Department of Energy, Energy Information Administration, International Energy Statistics, (2012)
    http://www.eia.gov/cfapps/ipdbproject/IEDIndex3.cfm.

[^49]:    a Heating Oil contains $0.138690 \mathrm{MMBtu} /$ gallon
    b Propane contains $0.095475 \mathrm{MMBtu} /$ gallon.
    Source: Telephone survey of energy retailers conducted by the Wisconsin State Energy Office throughout the winter heating season, starting October 2, 2012 and ending March 18, 2013; Wisconsin Natural Gas utility websites and public pricing information (2009-2012).

[^50]:    a Since 1991, more than 99 percent of the gasoline sold in Wisconsin has been unleaded. The price is for full service gasoline until 1979 when the price is changed to represent self-service gasoline.
    b From 1970 to 1988, the price is the full service price. Beginning in 1989 the price is the self-service price.
    c A state petroleum inspection fee is also charged. In 2011, this fee was 3 cents per gallon.
    d Nonattainment Areas are a designation of the federal Environmental Protection Agency. See http://www.epa.gov/oaqps001/greenbk/ancl.html for additional information
    e 2012 dollar values computer with Gross National Product Implicit Price Deflator. See the last page in this chapter with the table on price indices.
    Source: Wisconsin Division of the American Automobile Association, Fuel Gauge Report (1993-2012); Wisconsin Department of Revenue, Excise Tax Section (1993-2012)

[^51]:    a More information regarding alternative fuels can be found on the Wisconsin State Energy Office webiste at: www.stateenergyoffice.wi.gov.
    b The state tax for LPG per GGE is $\$ 0.226$, while the state tax for CNG is $\$ 0.247$.
    c 2012 dollar values computer with Gross National Product Implicit Price Deflator. See the last page in this chapter with the table on price indices.
    Source: U.S. Department of Energy, Alternative Fuels Data Center
    http://www.afdc.energy.gov/publications/\#search/keyword/?q=alternative\%20fuel\%20price\%20report (2000-2012);
    Wisconsin Department of Revenue, Excise Tax Section (1993-2012).

[^52]:    a Midwestern states in this dataset include all states in the PADD 2 district: Illinois, Indiana, lowa, Kansas, Kentucky, Michigan, Minnesota, Missouri, Nebraska, North Dakota, Ohio, Oklahoma, South Dakota, Tennessee, and Wisconsin.
    b Figures in the table represent averages calculated from monthly prices. The graph plots monthly data. The background dataset is available on request.
    Source: U.S. Department of Energy, Energy Information Administration, Gasoline Prices by Formulation, Grade, Sales Type (1994-2010),
    http://www.eia.gov/dnav/pet/pet_pri_allmg_a_EPMOU_PTA_dpgal_m.htm; Energy Information Administration, Gasoline and Diesel Fuel Update (2011-2012) http://www.eia.gov/petroleum/gasdiesel/

[^53]:    a 2012 dollar values computed with Gross National Product Implicit Price Deflator. See the last page in this chapter with the table on price indices p Preliminary estimates.
    r Revised.
    Source: U.S. Department of Energy, Energy Information Administration, State Energy Data System, Wisconsin prices (1970-2012), http://www.eia.gov/ state/seds/seds-data-complete.cfm.

[^54]:    a 2012 dollar values computer with Gross National Product Implicit Price Deflator. See the last page in this chapter with the table on price indices p Preliminary estimates.
    r Revised
    Source: Sector-specific pages in this chapter of this publication.

[^55]:    p Preliminary estimates.

[^56]:    a City Gate is the point where a pipeline or distribution company delivers natural gas to the natural gas utility serving the city and the surrounding area.
    Source: U.S. Department of Energy, EIA, Electric Power Monthly, Table 5.6.B [DOE/EIA-0226 (2014/02)] (February 2014)
    www.eia.doe.gov/electricity/monthly/index.cfm and Natural Gas Monthly, Tables 17, 18, 19 and 20 [DOE/EIA-0130 (2014/02)] (February 2014) http://www.eia.gov/naturalgas/monthly/

[^57]:    r Revised

[^58]:    a Does not include renewable energy, except those renewable fuels used in electricity production. p Preliminary estimates.
    r Revised due to revisions in price and consumption data.
    Source: Compiled from tables in this publication for Wisconsin residential energy use and prices.

[^59]:    a Does not include renewable energy, except those renewable fuels used in electricity production
    p Preliminary estimates.
    r Revised due to revisions in price and consumption data.
    Source: Compiled from tables in this publication for Wisconsin commercial energy use and prices.

[^60]:    a Does not include renewable energy, except those renewable fuels used in electricity production.
    p Preliminary estimates.
    r Revised due to revisions in price and consumption data.
    Source: Compiled from tables in this publication for Wisconsin industrial energy use and prices.

[^61]:    a Includes ethanol.

